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Motivation

2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD)- a highly toxic and
persistent organic pollutant

A by-products of a wide range of manufacturing processes including
smelting, chlorine bleaching of paper pulp and the manufacturing of
some herbicides and pesticides
Found in soils, sediments and food, especially dairy products, meat,
fish and shellfish

This contaminant can be found at the superfund sites

Samiran Sinha WNAR 2023 June 27, 2023 2 / 26



Objective

Fader et al. 1 used bulk RNAseq data on liver and on the intestine as well as

flow cytometry (this is the only cell-specific level data) and histology

(involving female mice)

Goal: Investigate dose-dependent TCDD-elicited hepatic cell-specific gene

expression associated with the development of NAFLD among male mice

using scRNAseq data

1Fader et al. (2015). 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Alters Lipid
Metabolism and Depletes Immune Cell Populations in the Jejunum of C57BL/6
Mice. Toxicol Sci. 2015 Dec;148(2):567-80.
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Normal versus fatty liver
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Experimental Design

Randomly assigned male C57BL/6 mice to one one of the eight levels, 0
with 0.1 mL sesame oil vehicle (0-level or control) 0.01, 0.03, 0.1, 0.3, 1,
3, 10 or 30 µg/kg TCDD every 4 days for 28 days (How many mice in
each dose level? 3, so the total was 3× 8 = 24)

Hepatic single-nuclei RNA-sequencing (snRNAseq) was performed using
the 10× Genomics Chromium Single Cell 3′ v3.1 kit

These are mRNA measurements
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National Toxicology Program’s approach to genomic
dose response modeling

Design dose response (DR) experiment with a sufficient number of doses

Design appropriate statistical test of hypothesis for deriving genes that
exhibit minimum effect to treatment

Fit parametric DR models derived from the Environmental Protection
Agency (EPA) software to identify a biological potency estimate

Group genes into predefined sets defined by gene ontologies and compute
composite POD of the gene set

Provide biological explanations for the selected set of genes and POD
estimates

POD: Point of departure, the threshold dose level at which the gene
expression starts to change from the control group
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Challenges

Traditional tests for pre-filtering: ANOVA

scRNA-seq data is highly heterogeneous (across different cell
types) and has a large number of zeroes

Violates standard Gaussian assumptions

No recommended method for differential gene expression analysis
(DGEA) in multiple group single cell experimental studies

Our contribution: Bayesian multiple group test (scBT)

Designed exclusively for dose–response scRNAseq data
FDR control
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Distributional Assumptions

Yi,j,k: expression value of cell i, gene j, dose-level k, for i = 1, . . . n and
j = 1, . . . p, k = 1, . . . ,K

Ri,j,k = I[Yi,j,k > 0]: indicator denoting the presence of an expression

Adopt the Hurdle model 2

[Yi,j,k|Ri,j,k = 1] ∼ Normal(µj,k, σ
2
j ),

pr(Yi,j,k = 0|Ri,j,k = 0) = 1,
Ri,j,k ∼ Bernoulli(ωj,k),

(1)

µj,k: the mean expression of the jth gene, level k, when it is expressed

ωj,k: the rate of gene expression of gene j and dose-level k

2McDavid et al. (2013). Data exploration, quality control and testing in
single-cell qPCR-based gene expression experiments. Bioinformatics, 29, 461–467.
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Test of Hypothesis

Need to account for the bimodality (due to the mixing of zeros and the
positive valued numeric variable) in single cell gene expression
distribution

Design a test capable of detecting changes in the means and the
inflation parameters, simultaneously, across the dose levels

H0,j : µj,1 = · · · = µj,K = µj and ωj,1 = · · · = ωj,K = ωj

versus the alternative

Ha,j : H0,j does not hold
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Bayesian Test- priors

For a given gene, say j, we use the following priors to calculate the marginal
likelihoods

H0,j Ha,j

µj,1 = · · · = µj,K = µj

µj ∼ N(m0, τµσ
2
j ) µj,k ∼ Normal(mk,0, τk,µσ

2
j )

σ2
j ∼ IG(aσ, bσ) σ2

j ∼ IG(aσ, bσ)

ωj,1 = · · · = ωj,K = ωj

ωj ∼ Beta(aω, bω) ωk,j ∼ Beta(ak,ω, bk,ω)

Hyperparameters are obtained by maximising the marginal likelihood under
the null and the alternative hypothesis
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Bayesian Test of Hypothesis (scBT)

Bayes factor

BF01,j =
LH0,j

LHa,j
× π(Ha,j)

π(H0,j)

π(Ha,j) and π(H0,j): prior probabilities for alternative and null model
Are π(Ha,j) = π(H0,j)? Yes.

LH0,j and LHa,j : marginal likelihood under the null and the alternative
hypothesis.
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Marginal Likelihood under H0,j
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Marginal Likelihood under Ha,j

LHa,j =
1

(2π)(
∑K

k=1

∑nk
i=1 Rk,i,j)/2

×
1∏K

k=1

√
1 + τk,µ

∑nk
i=1 Ri,j,k

×
1

Γ(aσ)b
aσ
σ

×
Γ(aσ +

∑K
k=1

∑nk
i=1 Ri,j,k/2)

(1/bσ +
∑K

k=1 Ak/2)
aσ+

∑K
k=1

∑nk
i=1 Ri,j,k/2

×
K∏

k=1

Beta(ak,ω +
∑nk

i=1 Ri,j,k, bk,ω + nk −
∑nk

i=1 Ri,j,k)

Beta(ak,ω , bk,ω)

where

Ak =


nk∑
i=1

Ri,j,kY
2
i,j,k +

m2
k,0

τk,µ

−


nk∑
i=1

Ri,j,k +
1

τk,µ


−1 

nk∑
i=1

Ri,j,kYi,j,k +
mk,0

τk,µ


2

Samiran Sinha WNAR 2023 June 27, 2023 13 / 26



Multiplicity control

Dj : Data for the jth gene

Calculate the posterior probability of the null hypothesis

p(H0,j |Dj) =

(
1 +

1

BF01,j

)−1

For a target FDR α, we reject H0,j when p(H0,j |Dj) < ζ, 3

ζ is the largest value such that C(ζ)
J(ζ) ≤ α

J(ζ) = {j : p(H0,j |Dj) ≤ ζ} and C(ζ) =
∑

j∈J(ζ) p(H0,j |Dj)
C(ζ)
J(ζ) : the average posterior probability of null hypothesis of the

statistically significant genes

3Newton et al. (2004). Detecting differential gene expression with a
semiparametric hierarchical mixture method. Biostatistics, 5, 155–176.
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Competing approaches

Likelihood ratio test (LRT-multiple)

LRT with a linear model for the mean and the inflation
parameters (LRT-linear)

µj,k = β0,j + βj,1dk (dk: kth dose, jth gene)
logit(ωj,k) = γ0,j + γj,1dk
For the jth gene, test H0,j : βj,1 = 0, γj,1 = 0 versus Ha,j : βj,1 ̸= 0
or γj,1 ̸= 0
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Competing approaches (existing)

limma-trend4: linear regression with dose as the explanatory variable

MAST5: Model-based Analysis of Single-cell Transcriptomics

Seurat Bimod6: (a pairwise test assuming the single cell RNA-seq hurdle
model framework)

WRS: Wilcoxon-Rank Sum test (it is pairwise test)

ANOVA

KW: Kruskal-Wallis test (nonparametric extension of one-way ANOVA)

For all these methods, we used the Benjamini-Hochberg adjusted p-value

4Law et al. (2014) voom: Precision weights unlock linear model analysis tools for
RNA-seq read counts. Genome Biol., 15, R29.

5Finak et al. (2015). MAST: a flexible statistical framework for assessing transcriptional
changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol.,
16, 278.

6McDavid et al. (2013) Data exploration, quality control and testing in single-cell
qPCR-based gene expression experiments. Bioinformatics, 29, 461–467.
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Simulations

Data was simulated consisting of nine dose groups of 500 cells each
(4500 total) and 5000 genes with a 10% probability of being DE

Simulation of genes based on initial parameters derived from real
DR data was reproduced 10 times

Performance of scBT was benchmarked against 8 other DE
analysis tests

To investigate test performance in controlling type I errors, DGEA
methods on simulated datasets were examined with 0 %DE genes
(i.e. negative control)
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Simulations
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Simulation Results (PRC)

Unfiltered Filtered
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Simulation Results (ROC)

Unfiltered Filtered
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Simulation Results
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Simulation Results (performance ranking)

The methods were compared based on the 1) Mathew’s correlation coefficients
(MCC), 2) false positive rates (FPRs), 3) false negative rates (FNRs), 4) the
area under the ROC curve (AUROC) and 5) the area under the precision
recall curve (AUPRC)
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Real Dose Response Dataset

Total nuclei: 131613

Average nuclei per dose group: 14624

Seurat was used to integrate and log-normalize expression data

Average of 1,665 genes were detected across all nuclei

Applied the scBT method, used the FDR controlled selection criteria

Filtering method: Genes in the experimental dataset were considered
differentially expressed when expressed in ≥5% of cells in at least one
dose group and had a |fold-change| ≥ 1.5 in at least one of the seven
treatment groups

Samiran Sinha WNAR 2023 June 27, 2023 23 / 26



Real Data Analysis
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Quick Summary

Developed a multiplicity corrected Bayesian multiple group test (scBT),
designed exclusively for DGEA of dose–response scRNAseq data

In the context of investigating chemical or drug MoAs, false positives
have the potential to lead to wasted effort and resources

Simulations: scBT has excellent FPR control and top ranked AUPRC,
but scBT has low power

Real datasets: scBT detected biologically relevant genes in NAFLD
development and progression

The real data are deposited at the Gene Expression Omnibus
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Contribution

Simulator : R package
SplattDR is available at
https://github.com/zacharewskilab/splattdr

Proposed test approaches
: R package scBT is available at
https://github.com/satabdisaha1288/scBT
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