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SUMMARY

Among several semiparametric models, the Cox proportional hazard model is widely used to assess
the association between covariates and the time-to-event when the observed time-to-event is interval-
censored. Often covariates are measured with error. To handle this covariate uncertainty in the
Cox proportional hazard model with the interval-censored data flexible approaches have been pro-
posed. To fill a gap and broaden the scope of statistical applications to analyze time-to-event data
with different models, in this paper a general approach is proposed for fitting the semiparametric
linear transformation model to interval-censored data when a covariate is measured with error. The
semiparametric linear transformation model is a broad class of models that includes the proportional
hazard model and the proportional odds model as special cases. The proposed method relies on a set
of estimating equations to estimate the regression parameters and the infinite-dimensional parameter.
For handling interval censoring and covariate measurement error, a flexible imputation technique is
used. Finite sample performance of the proposed method is judged via simulation studies. Finally,

the suggested method is applied to analyze a real data set from an AIDS clinical trial.
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1 Introduction

The Cox proportional hazard (CPH) model and the proportional odds (PO) model are routinely
used as a time-to-event model for assessing the association between covariates and time-to-event.
However, for a more flexible model fitting, here we consider a broader class of models. Suppose that

given the covariates X and Z, the time-to-event T' follows the linear transformation model,
H(T) = —Xb1—Z"B, +e, (1)

where H is an unknown monotone transformation function on (0, 00) with H(7) - —oc as T'— 0,
e is the error with a completely known distribution function and is independent of both covariates
X and Z. The linear transformation model (1) reduces to the CPH model and the PO model when
e follows the extreme-value distribution and the logistic distribution, respectively. In this paper
we propose a new method for estimating the regression parameters 8 = (3, ,BQT)T and the infinite-
dimensional parameter H when T is interval-censored and X is subject to measurement error. This
method is robust towards the distribution of X. In particular, we consider case 2 interval censoring
where instead of observing T', we observe a random interval. Along with the intervals, we also observe
an indicator variable denoting whether the event occurs within the interval, or after the right end
point of the interval.! Since X is subject to measurement error, X is not observed in the data.
Instead, replicated measurements of a surrogate (proxy) variable are observed.

The motivation comes from an AIDS clinical trial data set. In order to test efficacy and compare
four different drugs, HIV positive subjects were randomly assigned to one of the four drugs. On
average, the subjects were followed over for 33 months, and the primary end point of the study
was the occurrence of AIDS, death, or at least 50% drop in the CD4 counts from the baseline
measurement. After the treatment initiation, subjects were supposed to be examined after 2, 4,
and 8 weeks and then every 12 weeks thereafter.? Naturally, any event that happened between two

examination times is interval-censored. Our interest is in modeling the time (in days) to occurrence



of the primary end point from the date treatment started. Since CD4 count is considered to be a
marker for antiretroviral treatment responses and HIV disease progression, its baseline measurement
is considered to be a covariate in our model. However, the actual CD4 cell count is difficult to
measure. So multiple measurements before the treatment started are considered to be replicated
observations on the erroneous surrogate variable for the true CD4 count. Analysis of these data is
complex due to the presence of two sources of uncertainty — the time-to-event falls in an interval and
instead of the actual CD4 counts, measurements on a surrogate variable are observed.

We first discuss the existing literature on the right-censored time-to-event data with covariate mea-
surement error. There are two main approaches for handling covariate measurement error, namely,
functional and structural approaches. In the functional paradigm the unobserved X is treated as
unknown constant, while in the structural paradigm the unobserved X is treated as a stochastic
variable and a probability distribution is assumed.? In the functional paradigm, Prentice,® Naka-
mura,” Huang and Wang® have developed several flexible approaches for handling right censoring
and covariate measurement error in the CPH model. For the PO model, Sinha and Ma’ proposed a
functional approach to handle covariate measurement error. Cheng and Wang® and Sinha and Ma’
proposed two different approaches for handling covariate measurement error in the linear transforma-
tion model. While Cheng and Wang® imposed partly parametric model assumptions on X and the
measurement error U and required to estimate the censoring distribution, Sinha and Ma? required a
parametric model only for the distribution of X.

For interval-censored data, Song and Ma!® proposed a functional approach to handle covariate
measurement error for the CPH model. They used a multiple imputation technique to impute the
time-to-event that falls within an interval, and then analyzed the imputed data sets by using the
conditional score approach for right-censored data.!! Wen and Chen'? proposed a functional inference
procedure with interval censoring and covariate measurement error when 7' follows the PO model.

They did not make any assumptions on the distribution of X, but assumed that U follows a normal



distribution. In contrast, we propose a methodology to handle covariate measurement error when 7T’
is subject to interval censoring and follows the linear transformation model. So far, to the best of
our knowledge, the issue of measurement error and interval censoring in the linear transformation
model has not been investigated, and this is the main contribution of this paper.

Here we briefly describe our methodology that has three basic components. First, we impute
unobserved covariate X from a conditional model given all the observed variables including the
information on the time-to-event 7. To avoid model misspecification we use a mixture model for
the conditional distribution of X with unknown number of mixing components. Second, we impute
T given all the information including the covariate imputed in the first step. In the third step
we treat the imputed data set as a right-censored data, and analyze it using the semiparametric
approach proposed in Chen et al.!® To account for uncertainty of the imputed values, we apply
multiple imputations, and then combine the results in the end. Imputation methods are not new
in handling interval-censored data. Pan'# considered the multiple imputation method for handling
interval censoring under the CPH model.

Before concluding this section, we would like to highlight the novel points of this article that
accommodates the CPH model, the PO model, and beyond. For handling measurement error, we
use a structural approach with a flexible imputation model that can accommodate a wide range of
distributions of the covariate X. To the best of our knowledge, we are the first to use an imputation
technique for handling covariate measurement error in interval-censored data. Second, we employ
the structurally simple estimating equations of Chen et al.'® in the context of interval-censored data,

so that the estimation of the parameters is straightforward.

2 Background, model and notation
Suppose that the data are collected from n independent subjects randomly drawn from an under-
lying population. The data from the ith subject are (L;, R;, Ai, Wit ..., Wi, Z;), i =1,...,n. For

each subject, if the right censoring indicator A = 1, then the time-to-event T satisfies L < T < R,



and when A = 0, the subject is right-censored above L, and L < T < oco. Here Z is a p x 1 vector
of error free covariates, and the vector of observations W denotes the replicated measurements on
a surrogate variable for X. The surrogacy implies that conditional on the true covariate X, the
surrogate variable W is independent of the response T'. We assume that the observed surrogate W

is related to the unobserved covariate X through the additive measurement error model:
Wij:Xi—l—Uij,j:l,...,m, (2)

where measurement error U;;’s are assumed to be independently and identically distributed (iid)
Normal(0, 02) variables. Furthermore, we assume that U is completely independent of other observed
variables.

Now, we discuss two standard approaches, naive (NV) and regression calibration (RC), for han-
dling covariate measurement error for any model. In the naive approach, all covariates are assumed to
be error free, and unobserved X; is replaced by the average of the W observations, W; = Z;n:l Wi /m,
in the estimation method. However, this approach does not produce consistent estimators for 3 and
H. The reason is explained in Section S.1 of the Supplementary materials.

In the regression calibration (RC) approach, an unobserved X is replaced by its predicted value
X that is a linear function of the surrogate variable W and the error-free covariates Z. The ex-
pression for the predictor X is given in Section S.2 of the Supplementary materials. Although the
RC method works reasonably well when the conditional distribution of X given Z and the vector of
W-observations is approximately normal and the measurement error o2 is small, it is generally not
a consistent method.

3 Estimation methodology
3.1 Imputation of unobserved covariate
As mentioned previously there are three major steps in the proposed methodology: imputation

of unobserved X, imputation of T" for the subjects that are not right-censored, and finally estimation



of 3 and H based on the imputed right-censored data set. Thus, X and 7" must be imputed from the
predictive distribution given the observed data. Let W = (W, ..., W,,)T. The predictive distribution

of X and T conditional on W, Z and the censored interval of T" is

FT.X|W,Z,L<T<R) = f(T'W.X,Z,L<T<R)f(X|W,Z,L<T<R)

= fTIX,Z,L<T<Rf(X|W,Z L<T<R),

where f(T|X,Z,L < T < R) is the conditional density of 7" given X, Z and the censored interval
and f(X|W,Z,L < T < R) is conditional distribution of X given the surrogate W, covariates Z,
and the censored interval. The second equality in the above display holds because the surrogate
variable and the time-to-event are assumed to be independent conditional on the true covariate X.

In this subsection we discuss a robust method of imputing X from the predictive distribution
f(X|W,Z, L < T < R). To sample X we use the data augmentation technique of Tanner and
Wong.!'® We simulate the parameters from their posterior distribution, and given the parameter
value we sample unobserved X from its conditional distribution. The conditional distribution of X
given W, Z, L < T < R and parameters contains two parts: 1) f(W|X,o?2), the conditional density
of W given X and o2 which is a product of normal density functions, and 2) f(X|Z,L < T < R, 8"),
the conditional distribution of X given Z,L < T < R, and parameters. To accommodate a wide
range of distributions, we model f(X|Z,L < T < R,0") as a k-component mixture of normal

distributions where the mixture density is

K’ T 77\2
T X -7 2)
XZJ<T<R£T:§ expq —— L2 % 3
JX] N ) — \/2m0} p{ 207 )
Here 0" consists of the mixing proportions i, ..., mw_1, the variance components 0%, ... 04, and the
regression parameters v7 ,...,~%,. The mixing proportions 7;’s are assumed to be positive and they

add up to one, and Z is a vector of potential predictors for X as functions of Z and the observed



time interval. Specifically we take
Z=1,Z" 5*(L),S*(R),S*(L)Z",S*(R)Z", S*(L)S*(R)", (4)

with S*(L) and S*(R) defined as log{S(L)} and log{1 + S(R)}, respectively, and S denotes the
estimated survival function from the data (L;, R;, A;,i = 1,...,n) using Turnbull’s algorithm.'® The
detailed steps are given in Section S.3 of the Supplementary materials. Besides Z, for modeling the
dependence of X on [L, R] and Z, various other functional forms of the regressor variables can be
taken. Note that for a mixture of normals model, the likelihood function is not bounded. Therefore,

either penalized maximum likelihood or Bayesian estimation is recommended.!” Let € be the vector

2
u

of parameters consisting of o2 and 7. We adopt a Bayesian procedure and use Gibbs sampling to
estimate 8, and impute unobserved X from its predictive distribution.

First, we describe the prior distributions for each component of 8. We assume InvGamma(a,, b,,)
and Dirichlet(cv, ..., ) prior on o2 and (my,...,m), respectively. Also, we use Normal(p., , ¥,,)
prior on the [th regression coefficient «,, and InvGamma(a,, b,) prior on ¢ for [ = 1,..., k. We
also introduce latent class-indicators vy, ...,, such that the prior probability that ); takes the
value [ is m; for [ = 1,...,k’. Now, in each iteration of the Gibbs sampling technique, we sample
each parameter, latent class-indicators, and unobserved X7, ..., X,, from their respective conditional
distribution. To reduce autocorrelation among the sampled observations and for quicker convergence
we use partially collapsed Gibbs sampler. The details are given in Section S.4 of the Supplementary
materials. We repeat this sampling (iterations) for a large number of times, say M. We then discard
the first few thousand iterations as burn-in run. The remaining samples are used to compute the
parameter estimates. We repeat this model fitting for different choices of k’, and then based on the
minimum BIC criteria we choose the optimal k’. Note that BIC is equal to k*log(n) — 210g(21),

where k* is 2k" + k'(3p + 4) and it denotes the number of parameters in the model for the vector of

W observations given Z. Additionally, L, denotes the likelihood £; of the vector of W observations



given the error free covariates Z and the time interval [L, R] evaluated at 6 = §M ap. The expression

of L is

e =11 / FOVAIX0) % o % (Wi X0) F(X,| Z0)dX

n

- Emexp{—z <v2v:3 = }Z¢2w02/m+a>eXp{_%}'

Since X is unobserved in the data, it is integrated out in £;. For the optimal k', we select m}

posterior samples for each X; as imputed X-values, after thinning the remaining MCMC samples
after the burn-in run. Thinning is used to reduce auto-correlation among the successive imputed
values.

3.2 Imputation (augmentation) of 7'

We now describe the imputation of 7" when imputed X values are available. Imputed X will be
denoted by X*. Also, we shall impute 7" only when the time-to-event is interval-censored with the
upper limit of the interval finite. Denote the known hazard and cumulative hazard functions of e by
A(+) and A(-), respectively. Suppose that for a not right-censored, we divide the interval (L, R] into
m' equal small width intervals, (rg,71], ..., ("yt_1,Tmt] With L = rg, R = 7,,1, and then impute the

latent 1" from the following discrete distribution

pr(T = n|T € (L, ), X, Z) = SPCAH o) + X5 + Z'B,}] — exp[-A{H(r) + X"B1 + Z" B,}]

exp[-A{H(L) + X + 27 By}] — expl—A{H(R) + X*Pr + 27 B,
forl =1,...,m'. The denominator of the above expression is the probability that T lies in the interval
(L, R] while the numerator is the probability that 7" lies in the interval (r;_1,7;]. This imputation
technique of dividing the interval into a set of grid points was used by Pan.!* The number of intervals
m! may vary across subjects, and we discuss the choice of m' in the simulation section.
3.3 Estimation for right-censored data with known covariates

Let T* denote the imputed time for an uncensored subject. Define V =T* for A=1and V =L

for A = 0. Thus, after imputation, the data on the ith subject are (V;, A;, X5, Z;) for i = 1,...,n.
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In this subsection we discuss the third major step of the proposed methodology — estimation of 3
and H based on the imputed right-censored data set according to Chen et al.'®’s approach.

Define the counting process N(-) and the at-risk process Y (:) as I(V < ;A = 1) and I(V >
1), respectively, and suppose that Z* denotes the vector (X*, Z*)”. Then M(9;3, H) defined as
N(9) — foﬁ Y (u)dA{H(u) + X*B, + Z*3,} is a martingale with respect to filtration F(¢J) defined as
the sigma algebra on the covariate X* and Z, and the counting and at-risk processes up to time .

Next we estimate 3 by solving the following estimating equations
Su(B.H) = [ ZiaMi(wi B H) = 30 ZiA - MH(YV) + X6+ ZIBH =0, (3
i=1 "0 i=1

and H(u) at the ordered failure times 1) < - -+ < ¥ (K denotes the number of distinct failure times

in the data, ¥;: the smallest failure time, Jx: the largest failure time) by solving

n

Su(B, H) (W) = Y _[dN; (k) — Yi(W)dA{H () + X; By + Z] B,}] = 0. (6)

i=1
Equation (6) is solved as follows. Suppose that dj denotes the observed number of events/failures at
time J. We set H(t) equal to —oo for all ¢ less than ¢, and from (6) obtain H(t;) by solving the

equation

ZY DA H W) + X760+ ZT 85}

as A(—oo0) = 0. Next, for a given H(V_1), H(Ux) will be obtained by solving the equation dy =
S Y00 M H W) + X8+ ZI By} — AM{H(9g—1) + Xi B+ Z] By}], for k=2,..., K. Prompted
by a reviewer’s comment, here we point out a difference between Wen and Chen'?’s estimation
technique and our method. Besides the difference in the models, Wen and Chen'? used a conditional
score approach to estimate the regression parameter, and used a self-consistent method to estimate
the non-parametric component of their PO model.

Let B and H denote the estimates of B and H, respectively. Also, for ¥y 1 < t < ¥y, we

set H(t) = H(¥,_1). Under some regularity conditions, the asymptotic variance of \/n8 can be
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consistently estimated by (3, H) = A~14,;A~T, where the expression of A and Ay are given in the
Appendix at the end of this paper. Note that A is obtained by taking the derivative of the estimating
equation with respect to 3. The middle term A,; is obtained as an estimator of the variance of the
estimating equation after proper linearization. The details can be found in Chen et al.'3
3.4 Complete steps of estimation

We first impute unobserved X and interval-censored T' from their prediction distributions. We
form a pseudo right-censored data with the imputed values of X and T', while Z remains unchanged
in every pseudo data set. We then apply a semiparametric method to estimate model parameters.
We repeat this procedure for multiple imputed values of X and 7', and then in the end we combine
multiple estimates of parameters to obtain the final estimate. Here we summarize the steps of
parameter estimation.

Step 1. Impute each unobserved X value m* times according to the method given in Section 3.1. We

* .
x?

use X7 as the k,th imputed value for X;, i =1,...,nand k, =1,...,m

~(0 ~ ~ ~
Step 2. Initialize 8 and H and denote them by ,8( : and H©, and set B, = ,6(

0 ~ ~
" and H,, = HO;
Step 3. Given X7, and the current value of ka and H, k., impute T; according to the method in

Section 3.2 when A; =1, and define V; 4, 1, = T, where 17, denotes the k;th imputed value for T;

)

*

fore=1,...,nand b, =1,...,m;;
Step 4. Define Dy, r, = {Vik, ko> Dis Xiy,» Ziyi = 1,...,n}. Estimate 8 and H following the method
in Section 3.3 and using data Dy, ,. Denote the corresponding estimates by Bkt,km and ﬁkt’kz,
respectively;

Step 5. Compute By, = (1/m}) Yy, By, s, and Hy, = (1/mf) gL, Hy, g,

Step 6. Repeat Steps 3—-5 until B,% converges;

Step 7. The final estimates are combinations of the estimates from different imputed data sets, and



they are

1
m

1
m

H,. (7)

jasp
I
=

/Bli

@)

o

Il
8 *
e
8 %

ke=1 1

ke

Importantly, there are two major steps: (a) X imputation through the MCMC mechanism, and (b)
estimation of 3 and H along with T" imputation. Note that the imputation of X is done independently
of the B and H parameter estimation. On the other hand, the augmentation of 7" and estimation
of @ and H are amalgamated together. The convergence of the MCMC chain can be checked at
least by the trace plot that shows the parameter values for each iteration of the MCMC chain, and
the Gelman-Rubin diagnostic plot to check if the observed MCMC samples are reasonably close to
the target posterior distribution. Once the MCMC chain reaches the equilibrium, the sampled X
values can be considered to come from the predictive density. In Step 4 above, we estimate H from
Equation (6) for a given 3. Then we estimate 3 by solving Equation (5) using the Newton-Raphson
method while treating H as known with H being set to the last estimated value. Next, we estimate
H again with the updated estimate of 3 and continue these steps until the estimate of 3 converges
with a relative tolerance of 1%.
3.5 Large sample properties

Our estimator BC converges in probability to 3*. If the parametric imputation model for X is
misspecified, then 3" may differ from the true parameter 3. Otherwise 8* = 8. The asymptotic
distributional properties of the estimator are summarized as follows with the proof given in Section

S.6 of the Supplementary materials.

Theorem 1. Under some reqularity conditions, as n — oo the distribution of \/ﬁ(,@c — B%) converges

to a mean-zero normal distribution, and the asymptotic variance of \/E(Bc — B%) is

®2
E{Dfl&(ﬁ*, B.0) + D;1D2w1<e>} (%) Dy Dy{T,(0)) DI D,
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Corollary 1. The asymptotic variance of \/E(Bc — B%) can be consistently estimated by
IR (PN ~ s ~ @2 ~ A A
- Z{Dl_lsi(ﬁcv B, Onap) + Df1D2¢i(9MAP)} +(m2) "' Dy Do{Zy(Oarap)} ' Dy DY
i=1

Here 0 map denotes the maximum a posteriori estimator of 6. The expression of the terms
are given in the end of this paper. Here we provide some intuition behind the result. Define
Ss(B8, H(:,B), ku ki) = (S5,(B, H(-,B), kus kt), SL(B, H(:, ), ks, k)T where the two components
are nothing but Ss, (3, H(-,8)) and Sg, (3, H(-, 8)) with added components k, and k, to denote the
corresponding dataset. Here H (t,3) denotes the solution of Equation (6) for a given 8. To prove the
asymptotic results, first note that due to Lemma 1 of Wang and Robins,'® our estimator BC is asymp-
totically equivalent to 3 that is the solution of n="/2(m*m;) ! 22?:1 ZZ;I Ss(B,H(-,B), ky, ki) = 0.
In proving the weak convergence results we take into account three aspects: 1) given X, variability
of the regression parameter estimator, 2) uncertainty due to the estimation of 6, and 3) variability
of the posterior samples of 8. This asymptotic variance can also be used in the Wald test for 3.

Further discussion is warranted regarding the asymptotic results. The parameter 8% used in
Theorem 1 can be characterized as the solution of E[(m*m;n)~! 22?:1 ZZ;l Ss(8, H(-,B8), ky, k)] =
0. If the assumed model for X is the true X generating process then 3" = 8. We have to accept
the fact that it is not possible to guarantee that the assumed model and the true data generating
process are identical. However, we had proposed to use a flexible finite mixture of normals to model
the conditional distribution of X given Z and observed time interval. There we used the minimum
BIC criteria to choose the optimal number of mixing components. This in turn allows us to obtain
the best fitted model for the observed data. Moreover, to avoid misspecification of the dependence
of X on other variables, we took a flexible structure for Z as given in (4). Under this flexible model,
it is reasonable to assume that our estimator estimates B (or in other words 3* = 3).

As 02 gets small, D, tends to be small. In the no measurement error case, Dy = 0. In this case we

do not impute X values (i.e., X; = W1 = X7,(0), m;

T

= 1). Asexpected, the asymptotic distribution

11



of the estimator /n(8 — @) is then the same as that of —n /23" Dl’lsi(ﬁ, 3, 6) which is normal
with mean zero and a proper covariance matrix, where S;(8,3,6) = >_,", Si(8, Vix,1(8), X;1(0))/m;.
The expression of the summand Si(8, Vi, 1(8), X;1(8)) is given in the Appendix.

Alternative to the asymptotic variance formula of Corollary 1, here we also provide the variance

formula by Rubin’s!® (p. 76) approach,

Zzzﬁktk,@ Hk‘t )

kp=1 k=1 my kp=1ki=1

Z; Z 5kt ke Ek;c)(aktkr _ Bk’”)T- (8)

* *
mim; — 1

mmt

Formula (8) has two parts. The first part assesses the variability of the estimates for a given imputed
data set while the second term measures the variability between the estimates for different imputed
data sets. In most practical applications, the difference between Rubin’s variance formula and the
more accurate variance formula is negligible unless the imputation model is grossly wrong.?’ Due to

ease of implementation, in our numerical studies we have used the variance formula (8).

4 Simulation study

First we considered the case where intervals for each non-censored subject were of equal length.
Each simulated data set consisted of n = 200 subjects. For each subject, a scalar Z was simulated
from Bernoulli(0.5) and X was simulated from two different distributions: 1) Normal(0,1) and 2)
{Gamma(2,2) — 4} /+/8 which is referred to as the modified gamma (MG) distribution. To generate
time-to-event 7', log(T") was set equal to —$ X — Zf3, + e, where f; = —1 and 5, = 1 and the error

e followed the extreme-value distribution with the cumulative distribution function

1 —exp{—exp(e)}, for r = 0;
F(e) = (9)
1 — exp[—log{rexp(e) +1}/r], for r > 0.
For simulating interval-censored data, let 0 = vy < v; < -+ < vg < v9 = 00 be the eight scheduled

visits.2! Then for each subject, v; was simulated from Uniform(0, ¥7), and the next seven follow-up
times were generated using the formula: v, = vy + (t — 1)d, t = 2,...,8. For 30% right censoring,

d was set at 0.1, and for r equal to 0 and 1, ¥' was set to 0.1 and 2.1, respectively. A subject was

12



considered right-censored (i.e., A = 0), if the corresponding T fell above vg. Otherwise the subject
was considered interval-censored (A = 1) with the interval (v;, v;11) when T lies between v, and vy 1.
To obtain W, we set W = X + U, where measurement error U = ¢,U* with two distributions for
U*: 1) Normal(0, 1) and 2) modified gamma (MG). We took two values for o2, 0.25 and 0.5. We
considered two replicated measurements for W that were obtained by adding two independent copies
of U to a given X value.

Each data set was analyzed by four methods. For reference, the interval-censored data were first
analyzed using the true X. This method is referred to as the no measurement error case (NM). In NM,
T impution (Section 3.2) and parameter estimation (Section 3.3) were repeated until the estimates
converged. In the next three approaches, instead of X, W were used. In NV, each unobserved X was
replaced by the average of the two replicated W’s while in RC, X was replaced by X discussed in
Section 2. Finally, in the proposed imputation based method (IM), the parameters were estimated
according to the steps given in Section 3.4. For IM, we set m} = 20 and m; = 10. In IM, for
sampling from the predictive distribution, we used InvGamma(1, 1) and Dirichlet(1,...,1) prior for
oy and (my, ..., ), respectively. For of and -, we used InvGamma(1, 1) and Normal(., , 5I7) prior,
respectively, for [ = 1,... k'. Each p, was a vector of length 7 (3p+4 = 3x 1+4) whose first element
was chosen to be the {1001/(k” + 1)}th quantile of W and the rest of the components were randomly
drawn from the standard normal distribution, and I7 represents the identity matrix of order 7.

In each scenario, we present bias (B), simulation standard error (S), estimated standard error
(E) and 95% coverage probability (C) using the Wald confidence interval based on the converged
datasets out of 1000 replications. Approximately 1-1.5% data sets had convergence issue. For IM,
the estimated standard error was calculated using formula (8) while for NM and NV it was calculated
using formula (8) but without any imputation for X. For RC, the estimated standard errors were
calculated using the formula given in Section S.5 of the Supplementary materials. The bias in NM

serves as the benchmark. We are mainly concerned with the estimation bias of §;. Results of Table
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1 indicate that the bias in NV is substantially large and the 95% coverage probability is quite low
for 02 = 0.5. Although RC shows satisfactory performance when X follows the normal distribution
and o2 is 0.25, its bias substantially increases and the coverage probability markedly decreases when
02 is increased to 0.5. Even for 02 = 0.25, RC performs poorly when X follows the MG distribution
across different r values. In contrast, the bias in IM is generally substantially smaller than that in
NV and RC. Also, the empirical coverage probability for IM is reasonably close to the nominal level.
For all the methods, the estimated standard errors are reasonably close to the simulation standard
deviations indicating that the asymptotic standard error formula is valid. The standard error of IM
is generally larger than that of NV and RC because of the uncertainity of the imputed X values.

Next, mimicking the AIDS data set, we simulated datasets with n = 500, unequal lengths of
intervals, and approximately 90% right-censored subjects. To do so, ordered examination times
v < --- < wvg were simulated for each subject as before. Subjects were then allowed to miss the
first four scheduled visits with probability 0.3 and the last four with probability 0.5. The interval
(L, R] was the shortest interval between two non-missed visit times that contained T'. Here, we chose
9T = 0.0001, and for r = 0, d = 0.12 and for r = 1, d = 0.15 to maintain 90% censoring. The
generation of the rest of the variables remained the same as in the equal-length setup. The results for
r equal to 0 and 1 cases are presented in Table 2. When X follows the MG distribution, regardless of
the distribution of U (or U*), IM performs much better compared to NV and RC in terms of bias and
coverage. However, when X follows a normal distribution, the results indicate similar performance by
RC and IM while both are superior to NV. To assess the performance of IM beyond the CPH (r = 0)
and PO (r = 1) models, data sets were also generated for a general r = 2 case with 97 = 0.0001 and
d = 0.15 to maintain 90% censoring. To save space, only the results for both X and U following the
MG distribution are presented (Table 3). Again IM shows superior performance.

Note that the cases where X or U follows the MG distribution are violations of our model

assumptions on the distribution of X and U. Thus these results and some additional simulation
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studies presented in Section S.7 of the Supplementary materials help judge the sensitivity of IM
towards those assumptions. Following a reviewer’s comment, we also compared the proximity of
the estimated and empirical variances for the IM method. For the normal-normal scenario of Table
2 with 7 = 0 and 02 = 0.5, the estimated and empirical variances for B\l were 0.029 and 0.024,
respectively. The 80% and 95% coverage probabilities were 0.834 and 0.967, respectively. For the
MG-MG scenario of Table 2 with r = 0 and 02 = 0.5, the estimated and empirical variances for Bl
were 0.087 and 0.095, respectively, and the 80% and 95% coverage probabilities were 0.806 and 0.947,
respectively. These results along with S, E, C presented in the tables provide evidence in favor of

the numerical validity of the variance estimation technique used in this paper.

5 Real data example

Now we analyze the motivating data set from the ACTG 175 trial, a randomized, double-blinded,
placebo controlled clinical trial to compare nucleoside monotherapy with combination therapy in
HIV-infected subjects. In our analysis, we consider only 516 subjects who had received zidovudine
alone (Z = 1) or the combination therapy zidovudine plus didanosine (Z = 0). Out of the 516
subjects, 50 subjects experienced the event (defined in the introduction) in the trial. The time-to-
event T is the length of time from when the treatment started to time when the event occurred.
Here, the logarithm of the unobserved true CD4 cell count is denoted by X, whereas the logarithm
of the observed CD4 cell count are the surrogate measurements, WW. Since there are two replications
of W, we use m = 2. The estimated measurement error variance for our data was approximately

44% of the variance of true X. This follows from the following facts:
Var(Wi,l — ‘/VZ"Q) = Val"(UiJ — UZ'72) = Var(Ui,l) + Var(Ui,g) = 20’3, (10)

and var(W;) = var(X;) + var(U;), where W; and U; denote (W;; + Wis)/2 and (U1 + Usz)/2,
respectively. Next, o2 is estimated by the sample variance of n pairwise differences of the replicated

W observations divided by 2, and o2 is estimated by subtracting the estimator of o2/2 from the
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sample variance of n average values of replicated W observations. Once these are estimated we can
estimate the noise to signal ratio, o2/02. The estimated error variance is within the range of the
values of 02 considered in our simulation study. We model T by setting H(T) equal to —X 31— Z 3> +e,
where e is assumed to follow the distributions given in (9), and H is an unknown non-decreasing
function of T'. Here our primary goal is to draw inference on 5; and [,.

We now analyze the data using the proposed IM method and compare its performance with the
existing NV and RC methods. Since true X is never recorded in this real data, we cannot apply NM.
For the IM method, we use m} = 20 and m; = 10 and analyze the data for r = 0,1,2. We use the
same flexible prior distributions for the IM approach as used in the simulation study. The left panel
of Table 4 contains the results of the analyses. In all three methods and for different r, high baseline
CD4 count seems to act as a protective factor on the time-to-event. Also, the combination therapy
seems to have an advantage over the monotherapy for elongating time-to-event. The estimated
regression coefficients for log(CD4) differ across the methods. It is worth mentioning that in IM
the regression parameter estimate corresponding to the treatment when r = 1 is reasonably close to
the corresponding estimate of Wen and Chen.'? Also, the negative sign of the regression parameter
estimate for log(C'D4) is consistent with the findings in other articles®!? that analyzed this data set.
Although different authors are using the data from the same clinical study, it is quite difficult to
verify if authors are using the same subset of the main data set. This is likely to result in different
parameter estimates in different papers. While the NV estimates are different from that of RC and
IM, the RC and IM estimates of 3, are somewhat close. This intuitively indicates that the underlying
distribution of X is likely to be normal because in Table 2 the biases for the RC and IM methods
were quite close when X followed a normal distribution. We point out that in IM a two-component
normal mixture model was used for modelling the distribution of X and the number of components
was determined based on the minimum BIC criteria. For this selected model, we have verified the

convergence of the MCMC chain through trace and Gelman-Rubin diagnostic plots given in Section
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S.8 of the Supplementary materials. There was no convergence problem for estimating 3 either.
For the purpose of further illustration that parameter estimates could be really different between
the RC and IM methods, we have replaced the observed W-values by simulated W’s in this data set,
so that the underlying distribution of X is more skewed than the observed data set. We simulated
W’s by W = X + U, where U’s were simulated from the modified gamma distribution, and for the
censored cases, X was generated from Gamma(0.5,0.7) (the mean of X was 0.35) and for the non-
censored cases, X was simulated from Gamma(0.5,1.6) (the mean of X was 0.8). Next, we analyzed
this partly simulated data using the NV, RC, and IM methods. The results given in the right panel
of Table 4 clearly show appreciable differences in the regression parameter estimates for X across the
methods and for different » = 0, 1,2 values. The results of our simulation studies suggest that these
differences are reflective of the smaller bias for the IM method. This indicates the advantage of using
the IM method to estimate the regression parameters over existing methods when the underlying

latent variable has a skewed distribution.

6 Conclusion

We have developed a semiparametric methodology for analyzing the linear transformation model
for interval-censored data when a covariate is measured with error. As mentioned, linear transfor-
mation model contains standard choices of proportional hazards and proportional odds models as
special cases. It allows us to study the performance of both standard and non-standard models using
the methodology in this paper. The proposed method is fairly robust towards the distribution of X.
As demonstrated in our simulation studies, the proposed method works well for scenarios including
the case of high percentage of right censoring and for slightly asymmetric measurement error distri-
butions. While in some cases the regression calibration shows satisfactory performance, overall the
performance of the proposed method is superior across different scenarios.

Technically, the proposed methodology can be extended to the scenario where multiple covariates

are measured with error. For that, model (3) needs to be replaced by a mixture of multivariate dis-
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tributions or a series of conditional distributions that are used in multivariate imputation by chained
equations (MICE?*?), and the measurement error should be modeled by a multivariate distribution.
However, some novelty is needed for handling a high-dimensional covariate measured with error. In
addition, the modeling technique may vary depending on whether internal or external validation data
are available. The proposed methodology can also be extended to case-K interval-censored data. In
addition, it can be applied to the scenario where the data contain a mixture of exact, right-censored
and interval-censored time-to-event observations.

Alternative to our semiparametric methodology, one may develop a methodology based on

3

the nonparametric maximum likelihood method of Zeng and Lin.?* However, we chose to use

the semiparametric methodology given in Chen et al.!

for regression parameter estimation due
to the simplicity of its computational algorithm. Particularly, the recursive procedure in es-
timating the H function is easy to implement. In summary, the significance of the proposed
work lies in the fact that we are the first to provide a solution of this important problem. We
have created an R package, named icemelt, for the proposed approach, and it is currently avail-

able at http://www.stat.tamu.edu/~sinha/research.html, and soon it will be available through

https://cran.r-project.org/.

7 Supplementary materials
The materials referenced in Sections 2, 3.1, 3.5, 4, and 5 are available in the Supplementary

materials.
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Appendix

Expressions of the terms involved in Z(B, }AI)
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for t < s, and A(t) denotes the derivative of A. Here the estimator of H is denoted by H(-,3).

Expressions of the terms involved in Theorem 1 and Corollary 1

Define 7,(6) = E{—(l/n)(?QlOg(ﬁl)/@@@@T} and S;(8,8,0) = Yp, S0, Si(B, Vi, (B), X4, (0))
/m;m}, where S;(3, Vz‘,h,h(ﬁ)’kax fo 4 Kz Hz ke, kr(u B)dMiy, i, (u; B, H) with sz =
(X730 Z0)" Mg, (ws B, H) = Nigop oy (w) = [ Yiooy (AA{H () + X7, 81+ Z] Bo}, Nigyk, (1) =
I Vigeko < Digok, = 1), Yig, g (u) = I(Vz koo > ), and g g (2 ,8) being the w_(t;3) for the

(ky, k. )th imputed data set. Also, define Hkt’kl(u, () as the estimator of H for the (k;, k,)th imputed
dataset for given 3 and this estimator is obtatined by solving (6). Additionally,
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Table 1: Simulation results based on 1000 replications for » = 0 and 1 with n = 200, equal-length intervals
and 30% right censoring on average. Here measurement error U = o,U*. All entries are multiplied by
100. B = bias, S = standard deviation, E = estimated standard error, C = 95% coverage probability, N =
Normal, MG = Modified Gamma, NM = No measurement error, NV = Naive, RC = Regression calibration,
IM = Imputation method.

X ~ N(0,1), U* ~ N(0,1) X ~ N(0,1), U* ~ MG
B1 B2 B1 B2
ro o2 NM NV RC IM NM NV RC IM|NM NV RC IM NM NV RC IM
0 025 B —-14 14.1 3.7 2.4 1.1 —45 —-45 —-20|—-14 128 1.7 1.2 1.1 -39 -38 -—-14
S 116 107 119 124 192 190 190 196 11.6 107 12.0 126 192 190 189 196
E 111 100 11.9 127 183 181 189 195| 11.1 102 12.0 13.0 183 181 188 19.5
C 941 66.7 92.9 940 945 92.8 934 94.7| 941 714 937 947 945 93.6 932 955
0 05 B —14 255 71 40 1.1 -81 —-82 —36|-14 229 32 20 11 -71 -73 —27
S 116 99 125 140 192 188 192 202| 11.6 100 126 141 192 189 189 20.0
E 111 92 127 143 183 180 191 204 | 11.1 95 129 147 183 180 19.0 20.5
C 941 234 87.8 922 945 920 923 948| 941 33.1 936 948 945 91.8 929 957
1 025 B 37 153 48 24 —40 —58 —51 —41| 37 151 41 22 —40 —-53 —58 —3.1
S 17.7 163 184 193 325 320 325 32.7| 17.7 167 181 199 325 322 321 322
E 167 154 174 185 29.7 296 295 30.3| 16.7 155 17.5 18.7 29.7 29.6 29.5 30.3
C 923 783 922 935 93.6 93.8 923 93.7| 923 795 93.3 929 93.6 93.6 92.0 943
1 05 B 37 249 57 15 —40 —64 —61 —40| 3.7 238 44 09 —40 —-68 —-T71 —29
S 177 152 193 212 325 321 319 331|177 148 188 222 325 320 319 329
E 167 144 180 204 297 293 294 31.0| 167 145 182 20.7 29.7 29.3 294 31.0
C 923 562 90.9 945 93.6 923 925 93.7| 923 60.8 93.0 93.6 93.6 923 92.0 945
X ~ MG, U* ~ N(0,1) X ~ MG, U* ~ MG
B1 B2 B1 B2
rooo? NM NV RC IM NM NV RC IM|NM NV RC IM NM NV RC IM
0 025 B —17 189 85 21 11 -38 -39 06]—-17 172 69 01 11 -34 -36 1.1
S 134 110 132 147 190 189 189 202| 134 11.3 12.8 145 190 188 19.1 20.0
E 129 108 128 149 179 17.7 185 194|129 11.0 129 153 179 17.7 184 194
C 947 56.6 87.0 94.2 93.7 934 941 94.2| 947 63.0 89.9 955 93.7 932 932 952
0 05 B —1.7 316 138 54 11 -70 -72 00|-17 287 106 15 11 —63 —66 0.9
S 134 9.7 133 160 190 188 189 211|134 101 131 160 19.0 185 192 20.7
E 129 95 132 162 179 176 187 20.3| 129 100 133 17.0 179 17.7 185 205
C 947 113 77.9 913 93.7 92.0 92.6 943 | 947 205 83.8 953 93.7 922 917 958
1 025 B 10 152 51 —08 —-43 —-59 —60 -3.7| 1.0 150 45 —08 —43 —59 —54 —36
S 199 17.9 20.3 225 333 330 323 341|199 17.8 197 225 333 33.0 324 341
E 180 161 181 20.7 29.8 297 29.7 30.5| 18.0 162 18.2 20.6 29.8 29.7 29.7 30.5
C 919 79.0 90.1 926 91.6 91.8 924 924| 91.9 79.6 91.7 92.7 91.6 921 922 925
1 05 B 10 262 92 -22 —43 -72 -93 33| 10 252 59 —22 —43 —67 —67 —33
S 199 163 20.1 251 33.3 320 30.6 348|199 157 202 251 333 320 324 34.8
E 180 147 186 23.2 298 204 344 313|180 148 187 232 298 294 296 31.3
C 919 51.3 869 931 91.6 923 922 924 91.9 556 90.5 931 91.6 92.0 917 92.3
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Table 2: Simulation results based on 1000 replications for » = 0 and 1 with n = 500, unequal-length intervals
and 90% right censoring on average. Here measurement error U = o,U*. All entries are multiplied by 100. B
= bias, S = standard deviation, E = estimated standard error, C = 95% coverage probability, N = Normal,
MG = Modified Gamma, NM = No measurement error, NV = Naive, RC = Regression calibration, IM =
Imputation method.

X ~ N, U* ~ N(0,1) X ~ N(0,1), U* ~ MG
ﬁl 62 Bl 52
roo? NM NV RC IM NM NV RC IM| NM NV RC IM NM NV RC IM
0 0.25 13 116 05 09 34 23 23 26|-13 99 —14 —06 34 25 25 28
148 137 154 150 309 31.0 309 31.0| 148 141 159 153 30.9 30.9 30.9 31.0
14.7 13.6 154 159 305 30.5 30.7 309 | 147 139 156 16.1 30.5 30.5 30.8 30.9
946 848 954 965 95.7 96.0 95.9 95.6| 94.6 865 953 96.7 957 96.1 95.6 95.9

Q- wnw

-1.3 21.3 1.5 21 34 14 13 18|-13 182 -—-24 —-08 34 17 18 21
14.8 129 16.3 156 309 309 308 31.0| 148 13.7 173 16.2 309 30.8 30.8 31.0
14.7 128 16.2 169 305 304 314 31.2| 14.7 133 166 174 30.5 30.4 30.6 31.3
94.6 59.5 949 96.7 95.7 95.9 95.7 95.7| 94.6 67.2 94.7 96.1 95.7 95.7 95.7 96.1

QM wnw

1 025 -13 117 06 -01 29 15 15 25|-13 103 -10 -14 29 1.7 1.7 28
17.0 154 175 17,5 322 32.0 31.8 32.2| 170 15.7 177 17.6 322 32.0 32.0 323
16.9 155 175 182 321 319 32.0 325 | 169 157 177 184 32.1 319 321 325

95.1 86.4 96.0 96.9 96.1 964 96.3 96.4| 95.1 888 955 96.7 96.1 96.3 96.3 96.4

Q-™dwnw

-1.3 21.6 1.8 04 29 04 04 21|-13 189 -—-16 -—-20 29 07 07 25
17.0 144 182 185 322 319 31.7 323 | 170 150 189 187 322 31.8 31.8 323
16.9 145 18.2 194 321 31.7 321 32.7| 169 14.8 187 19.8 32.1 31.7 321 328
95.1 65.7 955 96.8 96.1 959 96.1 964 | 95.1 719 95.0 96.8 96.1 96.0 954 96.1

Q- wnw

X ~ MG, U* ~ N(0,1) X ~ MG, U* ~ MG

B B2 B1 B2
rooo2 NM NV RC IM NM NV RC IM|NM NV RC IM NM NV RC IM
0 025 42 217 117 20 54 50 49 56|-42 198 96 -07 54 50 49 55
25.5 187 21.1 252 342 347 345 34.6| 255 19.6 220 26.6 342 345 342 34.3
242 19.1 215 257 32.2 322 324 32.6| 24.2 197 222 27.0 322 322 324 32.6
934 76.8 895 942 943 941 944 94.8| 934 79.1 90.6 94.6 943 942 947 94.8

Q" nw

—4.2 356 19.2 52 54 47 46 54| —-42 327 155 —-16 54 47 46 54
25.5 15.8 20.0 26.1 34.2 348 345 348 | 255 172 21.6 294 342 347 342 343
242 16.5 20.7 274 322 322 323 32.8| 242 175 220 303 322 322 32.6 329
93.4 422 82.6 941 943 941 942 946 | 934 51.1 86.7 947 943 942 945 948

Q-dwnw

—4.6 198 96 —-03 46 3.8 39 48| —-46 186 83 —23 46 38 36 4.7
254 19.2 21.6 263 334 336 334 336 254 198 223 273 334 334 331 334
242 19.6 22.1 26.6 323 322 324 327 242 200 226 272 323 322 323 327
93.4 79.2 91.3 94.7 953 951 952 955 | 934 813 921 954 953 94.3 94.7 94.6

1 025

Q- wnw

—4.6 33.6 16.7 1.7 46 33 32 48| -46 314 140 -39 46 32 32 51
254 16.3 20.6 28.0 334 336 334 338 254 174 21.8 30.7 334 334 331 336
242 1v.1 21.7 287 323 321 332 33.0| 242 178 225 31.6 323 32.1 328 33.0
93.4 485 85.7 951 953 949 952 952 | 934 56.3 88.3 958 953 94.0 946 948

Q" nw
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Table 3: Simulation results based on 1000 replications with n = 500, unequal-length intervals and 90% right
censoring on average. Measurement error U = ¢,U*, and U* follows the modified gamma distribution. All
entries are multiplied by 100. B = bias, S = standard deviation, E = estimated standard error, C = 95%
coverage probability, M N = Mixture Normal, NM = No measurement error, NV = Naive, RC = Regression
calibration, IM = Imputation method.

X~MG, r=2

b Do
o2 NM NV RC IM NM NV RC IM
025 B —48 179 75 =30 48 40 39 51
S 277 21.8 245 30.3 36.3 36.2 36.0 36.3
E 263 219 247 30.3 355 352 354 358

C 945 824 93.0 957 94.8 948 95.2 95.2

0.5 —4.8 324 130 =51 48 33 31 5.2
27.7 18.0 241 344 36.3 36.6 36.0 36.6
26.3 189 24.6 34.7 355 351 35.5 36.2

94.5 555 89.5 959 948 94.8 95.1 95.6

QEnd

Table 4: Results of the analysis of the ACTG data set (left panel) and the analysis of the ACTG
data set where the values of the surrogate for CD4 were replaced by simulated data (right panel).
Est = Estimate, SE = standard error, NV = Naive, RC = Regression calibration, IM = Imputation
method.

log(CD4) Treatment X Treatment
r Method Est SE p-value Est SE p-value Est SE p-value Est SE p-value
0 NV —-2720.50 <0.01 0.750.31 0.016 | —0.56 0.23 < 0.05 0.70 0.30 < 0.05
RC —-3.290.60 <0.01 0.74 0.31 0.016 | —0.65 0.26 < 0.05 0.68 0.31 < 0.05
IM —3.16 0.62 < 0.01 0.730.31 0.019 | —0.89 0.42 < 0.05 0.71 0.31 < 0.05

1 NV -3.040.60 <0.01 085034 0.013 | —=0.64 0.25 < 0.05 0.73 0.35 < 0.05
RC —-3.720.72 <0.01 0.830.34 0.015 | —0.69 0.28 < 0.05 0.69 0.34 < 0.05
IM —-3.620.77 <0.01 0.820.35 0.020 | —0.96 0.46 < 0.05 0.77 0.34 < 0.05

2 NV -339070 <0.01 0.930.38 0.015 | —0.65 0.26 < 0.05 0.80 0.36 < 0.05
RC —4.140.85 <0.01 0.93 0.38 0.015 | —0.73 0.30 < 0.05 0.82 0.37 < 0.05
IM —4.050.93 <0.01 092040 0.021 | —1.03 0.51 < 0.05 0.84 0.37 < 0.05
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