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Summary

Among several semiparametric models, the Cox proportional hazard model is widely used to assess

the association between covariates and the time-to-event when the observed time-to-event is interval-

censored. Often covariates are measured with error. To handle this covariate uncertainty in the

Cox proportional hazard model with the interval-censored data flexible approaches have been pro-

posed. To fill a gap and broaden the scope of statistical applications to analyze time-to-event data

with different models, in this paper a general approach is proposed for fitting the semiparametric

linear transformation model to interval-censored data when a covariate is measured with error. The

semiparametric linear transformation model is a broad class of models that includes the proportional

hazard model and the proportional odds model as special cases. The proposed method relies on a set

of estimating equations to estimate the regression parameters and the infinite-dimensional parameter.

For handling interval censoring and covariate measurement error, a flexible imputation technique is

used. Finite sample performance of the proposed method is judged via simulation studies. Finally,

the suggested method is applied to analyze a real data set from an AIDS clinical trial.

Key Words: Estimating equation; Linear transformation model; Martingale; Multiple imputation;

Non-differential measurement error; Predictive density.
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1 Introduction

The Cox proportional hazard (CPH) model and the proportional odds (PO) model are routinely

used as a time-to-event model for assessing the association between covariates and time-to-event.

However, for a more flexible model fitting, here we consider a broader class of models. Suppose that

given the covariates X and Z, the time-to-event T follows the linear transformation model,

H(T ) = −Xβ1 −ZTβ2 + e, (1)

where H is an unknown monotone transformation function on (0,∞) with H(T ) → −∞ as T → 0,

e is the error with a completely known distribution function and is independent of both covariates

X and Z. The linear transformation model (1) reduces to the CPH model and the PO model when

e follows the extreme-value distribution and the logistic distribution, respectively. In this paper

we propose a new method for estimating the regression parameters β = (β1,β
T
2 )T and the infinite-

dimensional parameter H when T is interval-censored and X is subject to measurement error. This

method is robust towards the distribution of X. In particular, we consider case 2 interval censoring

where instead of observing T , we observe a random interval. Along with the intervals, we also observe

an indicator variable denoting whether the event occurs within the interval, or after the right end

point of the interval.1 Since X is subject to measurement error, X is not observed in the data.

Instead, replicated measurements of a surrogate (proxy) variable are observed.

The motivation comes from an AIDS clinical trial data set. In order to test efficacy and compare

four different drugs, HIV positive subjects were randomly assigned to one of the four drugs. On

average, the subjects were followed over for 33 months, and the primary end point of the study

was the occurrence of AIDS, death, or at least 50% drop in the CD4 counts from the baseline

measurement. After the treatment initiation, subjects were supposed to be examined after 2, 4,

and 8 weeks and then every 12 weeks thereafter.2 Naturally, any event that happened between two

examination times is interval-censored. Our interest is in modeling the time (in days) to occurrence
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of the primary end point from the date treatment started. Since CD4 count is considered to be a

marker for antiretroviral treatment responses and HIV disease progression, its baseline measurement

is considered to be a covariate in our model. However, the actual CD4 cell count is difficult to

measure. So multiple measurements before the treatment started are considered to be replicated

observations on the erroneous surrogate variable for the true CD4 count. Analysis of these data is

complex due to the presence of two sources of uncertainty – the time-to-event falls in an interval and

instead of the actual CD4 counts, measurements on a surrogate variable are observed.

We first discuss the existing literature on the right-censored time-to-event data with covariate mea-

surement error. There are two main approaches for handling covariate measurement error, namely,

functional and structural approaches. In the functional paradigm the unobserved X is treated as

unknown constant, while in the structural paradigm the unobserved X is treated as a stochastic

variable and a probability distribution is assumed.3 In the functional paradigm, Prentice,4 Naka-

mura,5 Huang and Wang6 have developed several flexible approaches for handling right censoring

and covariate measurement error in the CPH model. For the PO model, Sinha and Ma7 proposed a

functional approach to handle covariate measurement error. Cheng and Wang8 and Sinha and Ma9

proposed two different approaches for handling covariate measurement error in the linear transforma-

tion model. While Cheng and Wang8 imposed partly parametric model assumptions on X and the

measurement error U and required to estimate the censoring distribution, Sinha and Ma9 required a

parametric model only for the distribution of X.

For interval-censored data, Song and Ma10 proposed a functional approach to handle covariate

measurement error for the CPH model. They used a multiple imputation technique to impute the

time-to-event that falls within an interval, and then analyzed the imputed data sets by using the

conditional score approach for right-censored data.11 Wen and Chen12 proposed a functional inference

procedure with interval censoring and covariate measurement error when T follows the PO model.

They did not make any assumptions on the distribution of X, but assumed that U follows a normal
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distribution. In contrast, we propose a methodology to handle covariate measurement error when T

is subject to interval censoring and follows the linear transformation model. So far, to the best of

our knowledge, the issue of measurement error and interval censoring in the linear transformation

model has not been investigated, and this is the main contribution of this paper.

Here we briefly describe our methodology that has three basic components. First, we impute

unobserved covariate X from a conditional model given all the observed variables including the

information on the time-to-event T . To avoid model misspecification we use a mixture model for

the conditional distribution of X with unknown number of mixing components. Second, we impute

T given all the information including the covariate imputed in the first step. In the third step

we treat the imputed data set as a right-censored data, and analyze it using the semiparametric

approach proposed in Chen et al.13 To account for uncertainty of the imputed values, we apply

multiple imputations, and then combine the results in the end. Imputation methods are not new

in handling interval-censored data. Pan14 considered the multiple imputation method for handling

interval censoring under the CPH model.

Before concluding this section, we would like to highlight the novel points of this article that

accommodates the CPH model, the PO model, and beyond. For handling measurement error, we

use a structural approach with a flexible imputation model that can accommodate a wide range of

distributions of the covariate X. To the best of our knowledge, we are the first to use an imputation

technique for handling covariate measurement error in interval-censored data. Second, we employ

the structurally simple estimating equations of Chen et al.13 in the context of interval-censored data,

so that the estimation of the parameters is straightforward.

2 Background, model and notation

Suppose that the data are collected from n independent subjects randomly drawn from an under-

lying population. The data from the ith subject are (Li, Ri,∆i,Wi1, . . . ,Wim,Zi), i = 1, . . . , n. For

each subject, if the right censoring indicator ∆ = 1, then the time-to-event T satisfies L < T ≤ R,
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and when ∆ = 0, the subject is right-censored above L, and L < T < ∞. Here Z is a p × 1 vector

of error free covariates, and the vector of observations W denotes the replicated measurements on

a surrogate variable for X. The surrogacy implies that conditional on the true covariate X, the

surrogate variable W is independent of the response T . We assume that the observed surrogate W

is related to the unobserved covariate X through the additive measurement error model:

Wij = Xi + Uij, j = 1, . . . ,m, (2)

where measurement error Uij’s are assumed to be independently and identically distributed (iid)

Normal(0, σ2
u) variables. Furthermore, we assume that U is completely independent of other observed

variables.

Now, we discuss two standard approaches, naive (NV) and regression calibration (RC), for han-

dling covariate measurement error for any model. In the naive approach, all covariates are assumed to

be error free, and unobserved Xi is replaced by the average of the W observations, W i =
∑m

j=1Wij/m,

in the estimation method. However, this approach does not produce consistent estimators for β and

H. The reason is explained in Section S.1 of the Supplementary materials.

In the regression calibration (RC) approach, an unobserved X is replaced by its predicted value

X̂ that is a linear function of the surrogate variable W and the error-free covariates Z. The ex-

pression for the predictor X̂ is given in Section S.2 of the Supplementary materials. Although the

RC method works reasonably well when the conditional distribution of X given Z and the vector of

W -observations is approximately normal and the measurement error σ2
u is small, it is generally not

a consistent method.

3 Estimation methodology
3.1 Imputation of unobserved covariate

As mentioned previously there are three major steps in the proposed methodology: imputation

of unobserved X, imputation of T for the subjects that are not right-censored, and finally estimation
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of β and H based on the imputed right-censored data set. Thus, X and T must be imputed from the

predictive distribution given the observed data. Let W˜ = (W1, . . . ,Wm)T . The predictive distribution

of X and T conditional on W˜,Z and the censored interval of T is

f(T,X|W˜,Z, L < T ≤ R) = f(T |W˜, X,Z, L < T ≤ R)f(X|W˜,Z, L < T ≤ R)

= f(T |X,Z, L < T ≤ R)f(X|W˜,Z, L < T ≤ R),

where f(T |X,Z, L < T ≤ R) is the conditional density of T given X,Z and the censored interval

and f(X|W˜,Z, L < T ≤ R) is conditional distribution of X given the surrogate W˜, covariates Z,

and the censored interval. The second equality in the above display holds because the surrogate

variable and the time-to-event are assumed to be independent conditional on the true covariate X.

In this subsection we discuss a robust method of imputing X from the predictive distribution

f(X|W˜,Z, L < T ≤ R). To sample X we use the data augmentation technique of Tanner and

Wong.15 We simulate the parameters from their posterior distribution, and given the parameter

value we sample unobserved X from its conditional distribution. The conditional distribution of X

given W˜,Z, L < T ≤ R and parameters contains two parts: 1) f(W˜|X, σ2
u), the conditional density

of W˜ given X and σ2
u which is a product of normal density functions, and 2) f(X|Z, L < T ≤ R,θ†),

the conditional distribution of X given Z, L < T ≤ R, and parameters. To accommodate a wide

range of distributions, we model f(X|Z, L < T ≤ R,θ†) as a k′-component mixture of normal

distributions where the mixture density is

f(X|Z, L < T ≤ R,θ†) =
k′∑
l=1

πl√
2πσ2

l

exp

{
−(X − γTl Z̃)2

2σ2
l

}
. (3)

Here θ† consists of the mixing proportions π1, . . . , πk′−1, the variance components σ2
1, . . . , σ

2
k′ , and the

regression parameters γT1 , . . . ,γ
T
k′ . The mixing proportions πl’s are assumed to be positive and they

add up to one, and Z̃ is a vector of potential predictors for X as functions of Z and the observed
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time interval. Specifically we take

Z̃ = [1,ZT , S∗(L), S∗(R), S∗(L)ZT , S∗(R)ZT , S∗(L)S∗(R)]T , (4)

with S∗(L) and S∗(R) defined as log{Ŝ(L)} and log{1 + Ŝ(R)}, respectively, and Ŝ denotes the

estimated survival function from the data (Li, Ri,∆i, i = 1, . . . , n) using Turnbull’s algorithm.16 The

detailed steps are given in Section S.3 of the Supplementary materials. Besides Z̃, for modeling the

dependence of X on [L,R] and Z, various other functional forms of the regressor variables can be

taken. Note that for a mixture of normals model, the likelihood function is not bounded. Therefore,

either penalized maximum likelihood or Bayesian estimation is recommended.17 Let θ be the vector

of parameters consisting of σ2
u and θ†. We adopt a Bayesian procedure and use Gibbs sampling to

estimate θ, and impute unobserved X from its predictive distribution.

First, we describe the prior distributions for each component of θ. We assume InvGamma(au, bu)

and Dirichlet(α, . . . , α) prior on σ2
u and (π1, . . . , πk′), respectively. Also, we use Normal(µγl ,Σγl)

prior on the lth regression coefficient γ l, and InvGamma(aσ, bσ) prior on σ2
l for l = 1, . . . , k′. We

also introduce latent class-indicators ψ1, . . . , ψn such that the prior probability that ψi takes the

value l is πl for l = 1, . . . , k′. Now, in each iteration of the Gibbs sampling technique, we sample

each parameter, latent class-indicators, and unobserved X1, . . . , Xn from their respective conditional

distribution. To reduce autocorrelation among the sampled observations and for quicker convergence

we use partially collapsed Gibbs sampler. The details are given in Section S.4 of the Supplementary

materials. We repeat this sampling (iterations) for a large number of times, say M . We then discard

the first few thousand iterations as burn-in run. The remaining samples are used to compute the

parameter estimates. We repeat this model fitting for different choices of k′, and then based on the

minimum BIC criteria we choose the optimal k′. Note that BIC is equal to k∗log(n) − 2log(L̂1),

where k∗ is 2k′ + k′(3p + 4) and it denotes the number of parameters in the model for the vector of

W observations given Z̃. Additionally, L̂1 denotes the likelihood L1 of the vector of W observations
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given the error free covariates Z and the time interval [L,R] evaluated at θ = θ̂MAP . The expression

of L1 is

L1 =
n∏
i=1

∫
f(Wi1|Xi)× · · · × f(Wim|Xi)f(Xi|Z̃i)dXi

=
n∏
i=1

1

(
√

2πσu)m
exp

{
−
∑m

j=1(Wij −W i)
2

2σ2
u

} k′∑
l=1

πl√
2π(σ2

u/m+ σ2
l )

exp

{
−(W i − γTl Z̃i)

2

2(σ2
u/m+ σ2

l )

}
.

Since X is unobserved in the data, it is integrated out in L1. For the optimal k′, we select m∗x

posterior samples for each Xi as imputed X-values, after thinning the remaining MCMC samples

after the burn-in run. Thinning is used to reduce auto-correlation among the successive imputed

values.

3.2 Imputation (augmentation) of T

We now describe the imputation of T when imputed X values are available. Imputed X will be

denoted by X∗. Also, we shall impute T only when the time-to-event is interval-censored with the

upper limit of the interval finite. Denote the known hazard and cumulative hazard functions of e by

λ(·) and Λ(·), respectively. Suppose that for a not right-censored, we divide the interval (L,R] into

m† equal small width intervals, (r0, r1], . . . , (rm†−1, rm† ] with L = r0, R = rm† , and then impute the

latent T from the following discrete distribution

pr(T = rl|T ∈ (L,R], X∗,Z) =
exp[−Λ{H(rl−1) +X∗β1 +ZTβ2}]− exp[−Λ{H(rl) +X∗β1 +ZTβ2}]
exp[−Λ{H(L) +X∗β1 +ZTβ2}]− exp[−Λ{H(R) +X∗β1 +ZTβ2}]

for l = 1, . . . ,m†. The denominator of the above expression is the probability that T lies in the interval

(L,R] while the numerator is the probability that T lies in the interval (rl−1, rl]. This imputation

technique of dividing the interval into a set of grid points was used by Pan.14 The number of intervals

m† may vary across subjects, and we discuss the choice of m† in the simulation section.

3.3 Estimation for right-censored data with known covariates

Let T ∗ denote the imputed time for an uncensored subject. Define V = T ∗ for ∆ = 1 and V = L

for ∆ = 0. Thus, after imputation, the data on the ith subject are (Vi,∆i, X
∗
i ,Zi) for i = 1, . . . , n.
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In this subsection we discuss the third major step of the proposed methodology – estimation of β

and H based on the imputed right-censored data set according to Chen et al.13’s approach.

Define the counting process N(·) and the at-risk process Y (·) as I(V ≤ ·,∆ = 1) and I(V ≥

·), respectively, and suppose that Z∗ denotes the vector (X∗,ZT )T . Then M(ϑ;β, H) defined as

N(ϑ)−
∫ ϑ
0
Y (u)dΛ{H(u) +X∗β1 +ZTβ2} is a martingale with respect to filtration F(ϑ) defined as

the sigma algebra on the covariate X∗ and Z, and the counting and at-risk processes up to time ϑ.

Next we estimate β by solving the following estimating equations

Sβ(β, H) =
n∑
i=1

∫ τ

0

Z∗i dMi(u;β, H) =
n∑
i=1

Z∗i [∆i − Λ{H(Vi) +X∗i β1 +ZT
i β2}] = 0, (5)

and H(u) at the ordered failure times ϑ1 < · · · < ϑK (K denotes the number of distinct failure times

in the data, ϑ1: the smallest failure time, ϑK : the largest failure time) by solving

SH(β, H)(ϑk) =
n∑
i=1

[dNi(ϑk)− Yi(ϑk)dΛ{H(ϑk) +X∗i β1 +ZT
i β2}] = 0. (6)

Equation (6) is solved as follows. Suppose that dk denotes the observed number of events/failures at

time ϑk. We set H(t) equal to −∞ for all t less than ϑ1 and from (6) obtain H(ϑ1) by solving the

equation

d1 =
n∑
i=1

Yi(ϑ1)Λ{H(ϑ1) +X∗i β1 +ZT
i β2}

as Λ(−∞) = 0. Next, for a given H(ϑk−1), H(ϑk) will be obtained by solving the equation dk =∑n
i=1 Yi(ϑk)[Λ{H(ϑk) +X∗i β1 +ZT

i β2}−Λ{H(ϑk−1) +X∗i β1 +ZT
i β2}], for k = 2, . . . , K. Prompted

by a reviewer’s comment, here we point out a difference between Wen and Chen12’s estimation

technique and our method. Besides the difference in the models, Wen and Chen12 used a conditional

score approach to estimate the regression parameter, and used a self-consistent method to estimate

the non-parametric component of their PO model.

Let β̂ and Ĥ denote the estimates of β and H, respectively. Also, for ϑk−1 ≤ t < ϑk, we

set Ĥ(t) = Ĥ(ϑk−1). Under some regularity conditions, the asymptotic variance of
√
nβ̂ can be
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consistently estimated by Σ(β̂, Ĥ) = A−1AMA
−T , where the expression of A and AM are given in the

Appendix at the end of this paper. Note that A is obtained by taking the derivative of the estimating

equation with respect to β. The middle term AM is obtained as an estimator of the variance of the

estimating equation after proper linearization. The details can be found in Chen et al.13

3.4 Complete steps of estimation

We first impute unobserved X and interval-censored T from their prediction distributions. We

form a pseudo right-censored data with the imputed values of X and T , while Z remains unchanged

in every pseudo data set. We then apply a semiparametric method to estimate model parameters.

We repeat this procedure for multiple imputed values of X and T , and then in the end we combine

multiple estimates of parameters to obtain the final estimate. Here we summarize the steps of

parameter estimation.

Step 1. Impute each unobserved X value m∗ times according to the method given in Section 3.1. We

use X∗i,kx as the kxth imputed value for Xi, i = 1, . . . , n and kx = 1, . . . ,m∗x;

Step 2. Initialize β and H and denote them by β̂
(0)

and Ĥ(0), and set β̂kx = β̂
(0)

and Ĥkx = Ĥ(0);

Step 3. Given X∗i,kx and the current value of β̂kx and Ĥkx , impute Ti according to the method in

Section 3.2 when ∆i = 1, and define Vi,kt,kx = T ∗i,kt , where T ∗i,kt denotes the ktth imputed value for Ti

for i = 1, . . . , n and kt = 1, . . . ,m∗t ;

Step 4. Define Dkt,kx = {Vi,kt,kx ,∆i, X
∗
i,kx
,Zi, i = 1, . . . , n}. Estimate β and H following the method

in Section 3.3 and using data Dkt,kx . Denote the corresponding estimates by β̂kt,kx and Ĥkt,kx ,

respectively;

Step 5. Compute β̂kx = (1/m∗t )
∑m∗t

kt=1 β̂kt,kx and Ĥkx = (1/m∗t )
∑m∗t

kt=1 Ĥkt,kx ;

Step 6. Repeat Steps 3–5 until β̂kx converges;

Step 7. The final estimates are combinations of the estimates from different imputed data sets, and
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they are

β̂c =
1

m∗x

m∗x∑
kx=1

β̂kx , Ĥc =
1

m∗x

m∗x∑
kx=1

Ĥkx . (7)

Importantly, there are two major steps: (a) X imputation through the MCMC mechanism, and (b)

estimation of β and H along with T imputation. Note that the imputation of X is done independently

of the β and H parameter estimation. On the other hand, the augmentation of T and estimation

of β and H are amalgamated together. The convergence of the MCMC chain can be checked at

least by the trace plot that shows the parameter values for each iteration of the MCMC chain, and

the Gelman-Rubin diagnostic plot to check if the observed MCMC samples are reasonably close to

the target posterior distribution. Once the MCMC chain reaches the equilibrium, the sampled X

values can be considered to come from the predictive density. In Step 4 above, we estimate H from

Equation (6) for a given β. Then we estimate β by solving Equation (5) using the Newton-Raphson

method while treating H as known with H being set to the last estimated value. Next, we estimate

H again with the updated estimate of β and continue these steps until the estimate of β converges

with a relative tolerance of 1%.

3.5 Large sample properties

Our estimator β̂c converges in probability to β∗. If the parametric imputation model for X is

misspecified, then β∗ may differ from the true parameter β. Otherwise β∗ = β. The asymptotic

distributional properties of the estimator are summarized as follows with the proof given in Section

S.6 of the Supplementary materials.

Theorem 1. Under some regularity conditions, as n→∞ the distribution of
√
n(β̂c − β∗) converges

to a mean-zero normal distribution, and the asymptotic variance of
√
n(β̂c − β∗) is

E

{
D−11 S1(β

∗,β∗,θ) +D−11 D2ψ1(θ)

}⊗2
+(m∗x)

−1D−11 D2{I1(θ)}−1DT
2D

−T
1 .

10



Corollary 1. The asymptotic variance of
√
n(β̂c − β∗) can be consistently estimated by

1

n

n∑
i=1

{
D̂−11 Si(β̂c, β̂c, θ̂MAP ) + D̂−11 D̂2ψi(θ̂MAP )

}⊗2
+(m∗x)

−1D̂−11 D̂2{Î1(θ̂MAP )}−1D̂T
2 D̂

−T
1 .

Here θ̂MAP denotes the maximum a posteriori estimator of θ. The expression of the terms

are given in the end of this paper. Here we provide some intuition behind the result. Define

Sβ(β, Ĥ(·,β), kx, kt) = (Sβ1(β, Ĥ(·,β), kx, kt), S
T
β2

(β, Ĥ(·,β), kx, kt))
T where the two components

are nothing but Sβ1(β, Ĥ(·,β)) and Sβ2(β, Ĥ(·,β)) with added components kx and kt to denote the

corresponding dataset. Here Ĥ(t,β) denotes the solution of Equation (6) for a given β. To prove the

asymptotic results, first note that due to Lemma 1 of Wang and Robins,18 our estimator β̂c is asymp-

totically equivalent to β̃ that is the solution of n−1/2(m∗xm
∗
t )
−1∑m∗x

kx=1

∑m∗t
kt=1 Sβ(β, Ĥ(·,β), kx, kt) = 0.

In proving the weak convergence results we take into account three aspects: 1) given X, variability

of the regression parameter estimator, 2) uncertainty due to the estimation of θ, and 3) variability

of the posterior samples of θ. This asymptotic variance can also be used in the Wald test for β.

Further discussion is warranted regarding the asymptotic results. The parameter β∗ used in

Theorem 1 can be characterized as the solution of E[(m∗xm
∗
tn)−1

∑m∗x
kx=1

∑m∗t
kt=1 Sβ(β, Ĥ(·,β), kx, kt)] =

0. If the assumed model for X is the true X generating process then β∗ = β. We have to accept

the fact that it is not possible to guarantee that the assumed model and the true data generating

process are identical. However, we had proposed to use a flexible finite mixture of normals to model

the conditional distribution of X given Z and observed time interval. There we used the minimum

BIC criteria to choose the optimal number of mixing components. This in turn allows us to obtain

the best fitted model for the observed data. Moreover, to avoid misspecification of the dependence

of X on other variables, we took a flexible structure for Z̃ as given in (4). Under this flexible model,

it is reasonable to assume that our estimator estimates β (or in other words β∗ = β).

As σ2
u gets small, D2 tends to be small. In the no measurement error case, D2 = 0. In this case we

do not impute X values (i.e., Xi = Wi,1 = X∗i,1(θ), m∗x = 1). As expected, the asymptotic distribution
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of the estimator
√
n(β̃−β) is then the same as that of −n−1/2

∑n
i=1D

−1
1 Si(β,β,θ) which is normal

with mean zero and a proper covariance matrix, where Si(β,β,θ) =
∑m∗t

kt=1 Si(β, Vi,kt,1(β), X∗i,1(θ))/m∗t .

The expression of the summand Si(β, Vi,kt,1(β), X∗i,1(θ)) is given in the Appendix.

Alternative to the asymptotic variance formula of Corollary 1, here we also provide the variance

formula by Rubin’s19 (p. 76) approach,

Ω =
1

m∗xm
∗
t

m∗x∑
kx=1

m∗t∑
kt=1

Σ(β̂kt,kx , Ĥkt,kx) + (1 +
1

m∗xm
∗
t

)

m∗x∑
kx=1

m∗t∑
kt=1

(β̂kt,kx − β̂kx)(β̂kt,kx − β̂kx)T

m∗xm
∗
t − 1

. (8)

Formula (8) has two parts. The first part assesses the variability of the estimates for a given imputed

data set while the second term measures the variability between the estimates for different imputed

data sets. In most practical applications, the difference between Rubin’s variance formula and the

more accurate variance formula is negligible unless the imputation model is grossly wrong.20 Due to

ease of implementation, in our numerical studies we have used the variance formula (8).

4 Simulation study

First we considered the case where intervals for each non-censored subject were of equal length.

Each simulated data set consisted of n = 200 subjects. For each subject, a scalar Z was simulated

from Bernoulli(0.5) and X was simulated from two different distributions: 1) Normal(0, 1) and 2)

{Gamma(2, 2)− 4}/
√

8 which is referred to as the modified gamma (MG) distribution. To generate

time-to-event T , log(T ) was set equal to −β1X − Zβ2 + e, where β1 = −1 and β2 = 1 and the error

e followed the extreme-value distribution with the cumulative distribution function

F (e) =

{
1− exp{− exp(e)}, for r = 0;

1− exp[−log{r exp(e) + 1}/r], for r > 0.
(9)

For simulating interval-censored data, let 0 = v0 < v1 < · · · < v8 < v9 = ∞ be the eight scheduled

visits.21 Then for each subject, v1 was simulated from Uniform(0, ϑ†), and the next seven follow-up

times were generated using the formula: vt = v1 + (t − 1)d, t = 2, . . . , 8. For 30% right censoring,

d was set at 0.1, and for r equal to 0 and 1, ϑ† was set to 0.1 and 2.1, respectively. A subject was
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considered right-censored (i.e., ∆ = 0), if the corresponding T fell above v8. Otherwise the subject

was considered interval-censored (∆ = 1) with the interval (vt, vt+1) when T lies between vt and vt+1.

To obtain W , we set W = X + U , where measurement error U = σuU
∗ with two distributions for

U∗: 1) Normal(0, 1) and 2) modified gamma (MG). We took two values for σ2
u, 0.25 and 0.5. We

considered two replicated measurements for W that were obtained by adding two independent copies

of U to a given X value.

Each data set was analyzed by four methods. For reference, the interval-censored data were first

analyzed using the true X. This method is referred to as the no measurement error case (NM). In NM,

T impution (Section 3.2) and parameter estimation (Section 3.3) were repeated until the estimates

converged. In the next three approaches, instead of X, W were used. In NV, each unobserved X was

replaced by the average of the two replicated W ’s while in RC, X was replaced by X̂ discussed in

Section 2. Finally, in the proposed imputation based method (IM), the parameters were estimated

according to the steps given in Section 3.4. For IM, we set m∗x = 20 and m∗t = 10. In IM, for

sampling from the predictive distribution, we used InvGamma(1, 1) and Dirichlet(1, . . . , 1) prior for

σ2
u and (π1, . . . , πk′), respectively. For σ2

l and γ l we used InvGamma(1, 1) and Normal(µγl , 5I7) prior,

respectively, for l = 1, . . . , k′. Each µγl was a vector of length 7 (3p+4 = 3×1+4) whose first element

was chosen to be the {100l/(k′+ 1)}th quantile of W and the rest of the components were randomly

drawn from the standard normal distribution, and I7 represents the identity matrix of order 7.

In each scenario, we present bias (B), simulation standard error (S), estimated standard error

(E) and 95% coverage probability (C) using the Wald confidence interval based on the converged

datasets out of 1000 replications. Approximately 1-1.5% data sets had convergence issue. For IM,

the estimated standard error was calculated using formula (8) while for NM and NV it was calculated

using formula (8) but without any imputation for X. For RC, the estimated standard errors were

calculated using the formula given in Section S.5 of the Supplementary materials. The bias in NM

serves as the benchmark. We are mainly concerned with the estimation bias of β1. Results of Table
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1 indicate that the bias in NV is substantially large and the 95% coverage probability is quite low

for σ2
u = 0.5. Although RC shows satisfactory performance when X follows the normal distribution

and σ2
u is 0.25, its bias substantially increases and the coverage probability markedly decreases when

σ2
u is increased to 0.5. Even for σ2

u = 0.25, RC performs poorly when X follows the MG distribution

across different r values. In contrast, the bias in IM is generally substantially smaller than that in

NV and RC. Also, the empirical coverage probability for IM is reasonably close to the nominal level.

For all the methods, the estimated standard errors are reasonably close to the simulation standard

deviations indicating that the asymptotic standard error formula is valid. The standard error of IM

is generally larger than that of NV and RC because of the uncertainity of the imputed X values.

Next, mimicking the AIDS data set, we simulated datasets with n = 500, unequal lengths of

intervals, and approximately 90% right-censored subjects. To do so, ordered examination times

v1 < · · · < v8 were simulated for each subject as before. Subjects were then allowed to miss the

first four scheduled visits with probability 0.3 and the last four with probability 0.5. The interval

(L,R] was the shortest interval between two non-missed visit times that contained T . Here, we chose

ϑ† = 0.0001, and for r = 0, d = 0.12 and for r = 1, d = 0.15 to maintain 90% censoring. The

generation of the rest of the variables remained the same as in the equal-length setup. The results for

r equal to 0 and 1 cases are presented in Table 2. When X follows the MG distribution, regardless of

the distribution of U (or U∗), IM performs much better compared to NV and RC in terms of bias and

coverage. However, when X follows a normal distribution, the results indicate similar performance by

RC and IM while both are superior to NV. To assess the performance of IM beyond the CPH (r = 0)

and PO (r = 1) models, data sets were also generated for a general r = 2 case with ϑ† = 0.0001 and

d = 0.15 to maintain 90% censoring. To save space, only the results for both X and U following the

MG distribution are presented (Table 3). Again IM shows superior performance.

Note that the cases where X or U follows the MG distribution are violations of our model

assumptions on the distribution of X and U . Thus these results and some additional simulation
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studies presented in Section S.7 of the Supplementary materials help judge the sensitivity of IM

towards those assumptions. Following a reviewer’s comment, we also compared the proximity of

the estimated and empirical variances for the IM method. For the normal-normal scenario of Table

2 with r = 0 and σ2
u = 0.5, the estimated and empirical variances for β̂1 were 0.029 and 0.024,

respectively. The 80% and 95% coverage probabilities were 0.834 and 0.967, respectively. For the

MG-MG scenario of Table 2 with r = 0 and σ2
u = 0.5, the estimated and empirical variances for β̂1

were 0.087 and 0.095, respectively, and the 80% and 95% coverage probabilities were 0.806 and 0.947,

respectively. These results along with S, E, C presented in the tables provide evidence in favor of

the numerical validity of the variance estimation technique used in this paper.

5 Real data example

Now we analyze the motivating data set from the ACTG 175 trial, a randomized, double-blinded,

placebo controlled clinical trial to compare nucleoside monotherapy with combination therapy in

HIV-infected subjects. In our analysis, we consider only 516 subjects who had received zidovudine

alone (Z = 1) or the combination therapy zidovudine plus didanosine (Z = 0). Out of the 516

subjects, 50 subjects experienced the event (defined in the introduction) in the trial. The time-to-

event T is the length of time from when the treatment started to time when the event occurred.

Here, the logarithm of the unobserved true CD4 cell count is denoted by X, whereas the logarithm

of the observed CD4 cell count are the surrogate measurements, W . Since there are two replications

of W , we use m = 2. The estimated measurement error variance for our data was approximately

44% of the variance of true X. This follows from the following facts:

var(Wi,1 −Wi,2) = var(Ui,1 − Ui,2) = var(Ui,1) + var(Ui,2) = 2σ2
u, (10)

and var(W i) = var(Xi) + var(U i), where W i and U i denote (Wi,1 + Wi,2)/2 and (Ui,1 + Ui,2)/2,

respectively. Next, σ2
u is estimated by the sample variance of n pairwise differences of the replicated

W observations divided by 2, and σ2
x is estimated by subtracting the estimator of σ2

u/2 from the
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sample variance of n average values of replicated W observations. Once these are estimated we can

estimate the noise to signal ratio, σ2
u/σ

2
x. The estimated error variance is within the range of the

values of σ2
u considered in our simulation study. We model T by setting H(T ) equal to −Xβ1−Zβ2+e,

where e is assumed to follow the distributions given in (9), and H is an unknown non-decreasing

function of T . Here our primary goal is to draw inference on β1 and β2.

We now analyze the data using the proposed IM method and compare its performance with the

existing NV and RC methods. Since true X is never recorded in this real data, we cannot apply NM.

For the IM method, we use m∗x = 20 and m∗t = 10 and analyze the data for r = 0, 1, 2. We use the

same flexible prior distributions for the IM approach as used in the simulation study. The left panel

of Table 4 contains the results of the analyses. In all three methods and for different r, high baseline

CD4 count seems to act as a protective factor on the time-to-event. Also, the combination therapy

seems to have an advantage over the monotherapy for elongating time-to-event. The estimated

regression coefficients for log(CD4) differ across the methods. It is worth mentioning that in IM

the regression parameter estimate corresponding to the treatment when r = 1 is reasonably close to

the corresponding estimate of Wen and Chen.12 Also, the negative sign of the regression parameter

estimate for log(CD4) is consistent with the findings in other articles9,12 that analyzed this data set.

Although different authors are using the data from the same clinical study, it is quite difficult to

verify if authors are using the same subset of the main data set. This is likely to result in different

parameter estimates in different papers. While the NV estimates are different from that of RC and

IM, the RC and IM estimates of β1 are somewhat close. This intuitively indicates that the underlying

distribution of X is likely to be normal because in Table 2 the biases for the RC and IM methods

were quite close when X followed a normal distribution. We point out that in IM a two-component

normal mixture model was used for modelling the distribution of X and the number of components

was determined based on the minimum BIC criteria. For this selected model, we have verified the

convergence of the MCMC chain through trace and Gelman-Rubin diagnostic plots given in Section
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S.8 of the Supplementary materials. There was no convergence problem for estimating β either.

For the purpose of further illustration that parameter estimates could be really different between

the RC and IM methods, we have replaced the observed W -values by simulated W ’s in this data set,

so that the underlying distribution of X is more skewed than the observed data set. We simulated

W ’s by W = X + U , where U ’s were simulated from the modified gamma distribution, and for the

censored cases, X was generated from Gamma(0.5, 0.7) (the mean of X was 0.35) and for the non-

censored cases, X was simulated from Gamma(0.5, 1.6) (the mean of X was 0.8). Next, we analyzed

this partly simulated data using the NV, RC, and IM methods. The results given in the right panel

of Table 4 clearly show appreciable differences in the regression parameter estimates for X across the

methods and for different r = 0, 1, 2 values. The results of our simulation studies suggest that these

differences are reflective of the smaller bias for the IM method. This indicates the advantage of using

the IM method to estimate the regression parameters over existing methods when the underlying

latent variable has a skewed distribution.

6 Conclusion

We have developed a semiparametric methodology for analyzing the linear transformation model

for interval-censored data when a covariate is measured with error. As mentioned, linear transfor-

mation model contains standard choices of proportional hazards and proportional odds models as

special cases. It allows us to study the performance of both standard and non-standard models using

the methodology in this paper. The proposed method is fairly robust towards the distribution of X.

As demonstrated in our simulation studies, the proposed method works well for scenarios including

the case of high percentage of right censoring and for slightly asymmetric measurement error distri-

butions. While in some cases the regression calibration shows satisfactory performance, overall the

performance of the proposed method is superior across different scenarios.

Technically, the proposed methodology can be extended to the scenario where multiple covariates

are measured with error. For that, model (3) needs to be replaced by a mixture of multivariate dis-
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tributions or a series of conditional distributions that are used in multivariate imputation by chained

equations (MICE22), and the measurement error should be modeled by a multivariate distribution.

However, some novelty is needed for handling a high-dimensional covariate measured with error. In

addition, the modeling technique may vary depending on whether internal or external validation data

are available. The proposed methodology can also be extended to case-K interval-censored data. In

addition, it can be applied to the scenario where the data contain a mixture of exact, right-censored

and interval-censored time-to-event observations.

Alternative to our semiparametric methodology, one may develop a methodology based on

the nonparametric maximum likelihood method of Zeng and Lin.23 However, we chose to use

the semiparametric methodology given in Chen et al.13 for regression parameter estimation due

to the simplicity of its computational algorithm. Particularly, the recursive procedure in es-

timating the H function is easy to implement. In summary, the significance of the proposed

work lies in the fact that we are the first to provide a solution of this important problem. We

have created an R package, named icemelt, for the proposed approach, and it is currently avail-

able at http://www.stat.tamu.edu/~sinha/research.html, and soon it will be available through

https://cran.r-project.org/.

7 Supplementary materials

The materials referenced in Sections 2, 3.1, 3.5, 4, and 5 are available in the Supplementary

materials.
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Appendix
Expressions of the terms involved in Σ(β̂, Ĥ)

A =
1

n

K∑
k=2

n∑
i=1

{Z∗i − µz(ϑk, β̂)}(Z∗i )T λ̇{β̂1X∗i +ZT
i β̂2 + Ĥ(ϑk, β̂)}Yi(ϑk){Ĥ(ϑk, β̂)− Ĥ(ϑk−1, β̂)},

AM =
1

n

K∑
k=2

n∑
i=1

{Z∗i − µz(ϑk, β̂)}⊗2λ{β̂1X∗i +ZT
i β̂2 + Ĥ(ϑk, β̂)}Yi(ϑk){Ĥ(ϑk, β̂)− Ĥ(ϑk−1, β̂)},

µz(t,β) =

∑n
i=1 Z

∗
i λ{β1X∗i +ZT

i β2 + Ĥ(Vi,β)}Yi(t)B(t, Vi,β)∑n
i=1 λ{β1X∗i +ZT

i β2 + Ĥ(t,β)}Yi(t)
,

B(t, s,β) = exp

[
−

∑
k:t≤ϑk−1<ϑk≤s

∑n
i=1[λ̇{β1X∗i +ZT

i β2 + Ĥ(ϑk,β)}Yi(ϑk)]∑n
i=1[λ{β1X∗i +ZT

i β2 + Ĥ(ϑk,β)}Yi(ϑk)]
{Ĥ(ϑk,β)− Ĥ(ϑk−1,β)}

]

for t ≤ s, and λ̇(t) denotes the derivative of λ. Here the estimator of H is denoted by Ĥ(·, β̂).

Expressions of the terms involved in Theorem 1 and Corollary 1

Define I1(θ) = E{−(1/n)∂2log(L1)/∂θ∂θ
T} and Si(β,β,θ) =

∑m∗t
kt=1

∑m∗x
kx=1 Si(β, Vi,kt,kx(β), X∗i,kx(θ))

/m∗tm
∗
x, where Si(β, Vi,kt,kx(β), X∗i,kx(θ)) =

∫ τ
0
{Z∗i,kx − µz,kt,kx(u;β)}dMi,kt,kx(u;β, H) with Z∗i,kx =

(X∗i,kx ,Z
T
i )T ,Mi,kt,kx(u;β, H) = Ni,kt,kx(u)−

∫ u
0
Yi,kt,kx(ϑ)dΛ{H(ϑ) +X∗i,kxβ1 +ZT

i β2}, Ni,kt,kx(u) =
I(Vi,kt,kx ≤ u,∆i,kt,kx = 1), Yi,kt,kx(u) = I(Vi,kt,kx ≥ u), and µz,kt,kx(t;β) being the µz(t;β) for the

(kt, kx)th imputed data set. Also, define Ĥkt,kx(u,β) as the estimator of H for the (kt, kx)th imputed
dataset for given β and this estimator is obtatined by solving (6). Additionally,

D1 = −
(
E

[
1

m∗tm
∗
x

m∗t∑
kt=1

m∗x∑
kx=1

∫ τ

0

{Z∗kx − µz,kt,kx(u;β)}Ykt,kx(u)

[
Z∗Tkxλ̇{Ĥkt,kx(u;β) +X∗kxβ1 +ZTβ2}
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×dĤkt,kx(u;β) + λ̇{Ĥkt,kx(u;β) +X∗kxβ1 +ZTβ2}
∂Hkt,kx(u;β)

∂β
dĤkt,kx(u;β) + λ{Ĥkt,kx(u;β)

+X∗kxβ1 +ZT
i β2} ×

∂dĤkt,kx(u;β)

∂β

]]
+E

[∫
1

m∗x

m∗x∑
kx=1

∫ τ

0

{Z∗kx − µz,kt,kx(u;β)}dMkt,kx(u;β, H)

×∆
∂

∂β
log{f(Tkt,kx|X∗kx ,Z, L < Tkt,kx ≤ R;β)}f(Tkt,kx|X∗kx ,Z, L < Tkt,kx ≤ R;β)dTkt,kx

])
β=β∗

,

D2 =

(
E

[
1

m∗t

m∗t∑
kt=1

∫
S(β, Vkt,kx(β), X∗kx)

∂

∂θT
log{f(X∗kx|L < T < R,W1, . . . ,Wm,Z;θ)}

×f(X∗kx|L < T < R,W1, . . . ,Wm,Z;θ)dX∗kx

])
β=β∗

,

D̂1 = − 1

n

n∑
i=1

(
1

m∗tm
∗
x

m∗t∑
kt=1

m∗x∑
kx=1

∫ τ

0

{Z∗i,kx − µz,kt,kx(u;β)}Yi,kt,kx(u)

×
[
Z∗Ti,kxλ̇{Ĥkt,kx(u;β) +X∗i,kxβ1 +ZT

i β2}dĤkt,kx(u;β)

+λ̇{Ĥkt,kx(u;β) +X∗i,kxβ1 +ZT
i β2}

∂Ĥkt,kx(u;β)

∂β
dĤkt,kx(u;β) + λ{Ĥkt,kx(u;β) +X∗i,kxβ1 +ZT

i β2}

×∂dĤkt,kx(u;β)

∂β

])
β=β̂c,θ=θ̂MAP

+
1

n

n∑
i=1

[∫
1

m∗x

m∗x∑
kx=1

∫ τ

0

{Z∗i,kx − µz,kt,kx(u;β)}dMi,kt,kx(u;β, Ĥkt,kx)

×∆i
∂

∂β
log{f(Ti,kt,kx|X∗i,kx ,Zi, Li < Ti,kt,kx ≤ Ri;β)}

×f(Ti,kt,kx|X∗i,kx ,Zi, Li < Ti,kt,kx ≤ Ri;β)dTi,kt,kx

]
β=β̂c,θ=θ̂MAP

D̂2 =
1

n

n∑
i=1

[
1

m∗t

m∗t∑
kt=1

∫
Si(β, Vi,kt,kx(β), X∗i,kx)

∂

∂θT
log{f(X∗i,kx|Li < Ti < Ri,Wi,1, . . . ,Wi,m,Zi;θ)}

×f(X∗i,kx|Li < Ti < Ri,Wi,1, . . . ,Wi,m,Zi;θ)dX∗i,kx

]
β=β̂c,θ=θ̂MAP

,

and with σ∗,2l = 1/(m/σ2
u + 1/σ2

l ), π
∗
l = πl(σ

∗
l /σl) exp[0.5{σ∗,2l (W i/σ

2
u/m+ γTl Z̃i/σ

2
l )− (γTl Z̃i)

2/σ2
l }],

f(X∗i,kx|Li < Ti < Ri,Wi,1, . . . ,Wi,m,Zi;θ) =
k′∑
l=1

π∗l√
2πσ∗l

exp

− 1

2σ∗,2l

{
X∗i,kx − σ

∗,2
l

(
W i

σ2
u/m

+
γTl Z̃i

σ2
l

)}2
 .
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Table 1: Simulation results based on 1000 replications for r = 0 and 1 with n = 200, equal-length intervals
and 30% right censoring on average. Here measurement error U = σuU

∗. All entries are multiplied by
100. B ≡ bias, S ≡ standard deviation, E ≡ estimated standard error, C ≡ 95% coverage probability, N ≡
Normal, MG ≡ Modified Gamma, NM ≡ No measurement error, NV ≡ Naive, RC ≡ Regression calibration,
IM ≡ Imputation method.

X ∼ N(0, 1), U∗ ∼ N(0, 1) X ∼ N(0, 1), U∗ ∼MG
β1 β2 β1 β2

r σ2
u NM NV RC IM NM NV RC IM NM NV RC IM NM NV RC IM

0 0.25 B −1.4 14.1 3.7 2.4 1.1 −4.5 −4.5 −2.0 −1.4 12.8 1.7 1.2 1.1 −3.9 −3.8 −1.4
S 11.6 10.7 11.9 12.4 19.2 19.0 19.0 19.6 11.6 10.7 12.0 12.6 19.2 19.0 18.9 19.6
E 11.1 10.0 11.9 12.7 18.3 18.1 18.9 19.5 11.1 10.2 12.0 13.0 18.3 18.1 18.8 19.5
C 94.1 66.7 92.9 94.0 94.5 92.8 93.4 94.7 94.1 71.4 93.7 94.7 94.5 93.6 93.2 95.5

0 0.5 B −1.4 25.5 7.1 4.0 1.1 −8.1 −8.2 −3.6 −1.4 22.9 3.2 2.0 1.1 −7.1 −7.3 −2.7
S 11.6 9.9 12.5 14.0 19.2 18.8 19.2 20.2 11.6 10.0 12.6 14.1 19.2 18.9 18.9 20.0
E 11.1 9.2 12.7 14.3 18.3 18.0 19.1 20.4 11.1 9.5 12.9 14.7 18.3 18.0 19.0 20.5
C 94.1 23.4 87.8 92.2 94.5 92.0 92.3 94.8 94.1 33.1 93.6 94.8 94.5 91.8 92.9 95.7

1 0.25 B 3.7 15.3 4.8 2.4 −4.0 −5.8 −5.1 −4.1 3.7 15.1 4.1 2.2 −4.0 −5.3 −5.8 −3.1
S 17.7 16.3 18.4 19.3 32.5 32.0 32.5 32.7 17.7 16.7 18.1 19.9 32.5 32.2 32.1 32.2
E 16.7 15.4 17.4 18.5 29.7 29.6 29.5 30.3 16.7 15.5 17.5 18.7 29.7 29.6 29.5 30.3
C 92.3 78.3 92.2 93.5 93.6 93.8 92.3 93.7 92.3 79.5 93.3 92.9 93.6 93.6 92.0 94.3

1 0.5 B 3.7 24.9 5.7 1.5 −4.0 −6.4 −6.1 −4.0 3.7 23.8 4.4 0.9 −4.0 −6.8 −7.1 −2.9
S 17.7 15.2 19.3 21.2 32.5 32.1 31.9 33.1 17.7 14.8 18.8 22.2 32.5 32.0 31.9 32.9
E 16.7 14.4 18.0 20.4 29.7 29.3 29.4 31.0 16.7 14.5 18.2 20.7 29.7 29.3 29.4 31.0
C 92.3 56.2 90.9 94.5 93.6 92.3 92.5 93.7 92.3 60.8 93.0 93.6 93.6 92.3 92.0 94.5

X ∼MG, U∗ ∼ N(0, 1) X ∼MG, U∗ ∼MG
β1 β2 β1 β2

r σ2
u NM NV RC IM NM NV RC IM NM NV RC IM NM NV RC IM

0 0.25 B −1.7 18.9 8.5 2.1 1.1 −3.8 −3.9 0.6 −1.7 17.2 6.9 0.1 1.1 −3.4 −3.6 1.1
S 13.4 11.0 13.2 14.7 19.0 18.9 18.9 20.2 13.4 11.3 12.8 14.5 19.0 18.8 19.1 20.0
E 12.9 10.8 12.8 14.9 17.9 17.7 18.5 19.4 12.9 11.0 12.9 15.3 17.9 17.7 18.4 19.4
C 94.7 56.6 87.0 94.2 93.7 93.4 94.1 94.2 94.7 63.0 89.9 95.5 93.7 93.2 93.2 95.2

0 0.5 B −1.7 31.6 13.8 5.4 1.1 −7.0 −7.2 0.0 −1.7 28.7 10.6 1.5 1.1 −6.3 −6.6 0.9
S 13.4 9.7 13.3 16.0 19.0 18.8 18.9 21.1 13.4 10.1 13.1 16.0 19.0 18.5 19.2 20.7
E 12.9 9.5 13.2 16.2 17.9 17.6 18.7 20.3 12.9 10.0 13.3 17.0 17.9 17.7 18.5 20.5
C 94.7 11.3 77.9 91.3 93.7 92.0 92.6 94.3 94.7 20.5 83.8 95.3 93.7 92.2 91.7 95.8

1 0.25 B 1.0 15.2 5.1 −0.8 −4.3 −5.9 −6.0 −3.7 1.0 15.0 4.5 −0.8 −4.3 −5.9 −5.4 −3.6
S 19.9 17.9 20.3 22.5 33.3 33.0 32.3 34.1 19.9 17.8 19.7 22.5 33.3 33.0 32.4 34.1
E 18.0 16.1 18.1 20.7 29.8 29.7 29.7 30.5 18.0 16.2 18.2 20.6 29.8 29.7 29.7 30.5
C 91.9 79.0 90.1 92.6 91.6 91.8 92.4 92.4 91.9 79.6 91.7 92.7 91.6 92.1 92.2 92.5

1 0.5 B 1.0 26.2 9.2 −2.2 −4.3 −7.2 −9.3 3.3 1.0 25.2 5.9 −2.2 −4.3 −6.7 −6.7 −3.3
S 19.9 16.3 20.1 25.1 33.3 32.0 30.6 34.8 19.9 15.7 20.2 25.1 33.3 32.0 32.4 34.8
E 18.0 14.7 18.6 23.2 29.8 29.4 34.4 31.3 18.0 14.8 18.7 23.2 29.8 29.4 29.6 31.3
C 91.9 51.3 86.9 93.1 91.6 92.3 92.2 92.4 91.9 55.6 90.5 93.1 91.6 92.0 91.7 92.3
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Table 2: Simulation results based on 1000 replications for r = 0 and 1 with n = 500, unequal-length intervals
and 90% right censoring on average. Here measurement error U = σuU

∗. All entries are multiplied by 100. B
≡ bias, S ≡ standard deviation, E ≡ estimated standard error, C ≡ 95% coverage probability, N ≡ Normal,
MG ≡ Modified Gamma, NM ≡ No measurement error, NV ≡ Naive, RC ≡ Regression calibration, IM ≡
Imputation method.

X ∼ N , U∗ ∼ N(0, 1) X ∼ N(0, 1), U∗ ∼MG
β1 β2 β1 β2

r σ2
u NM NV RC IM NM NV RC IM NM NV RC IM NM NV RC IM

0 0.25 B −1.3 11.6 0.5 0.9 3.4 2.3 2.3 2.6 −1.3 9.9 −1.4 −0.6 3.4 2.5 2.5 2.8
S 14.8 13.7 15.4 15.0 30.9 31.0 30.9 31.0 14.8 14.1 15.9 15.3 30.9 30.9 30.9 31.0
E 14.7 13.6 15.4 15.9 30.5 30.5 30.7 30.9 14.7 13.9 15.6 16.1 30.5 30.5 30.8 30.9
C 94.6 84.8 95.4 96.5 95.7 96.0 95.9 95.6 94.6 86.5 95.3 96.7 95.7 96.1 95.6 95.9

0 0.5 B −1.3 21.3 1.5 2.1 3.4 1.4 1.3 1.8 −1.3 18.2 −2.4 −0.8 3.4 1.7 1.8 2.1
S 14.8 12.9 16.3 15.6 30.9 30.9 30.8 31.0 14.8 13.7 17.3 16.2 30.9 30.8 30.8 31.0
E 14.7 12.8 16.2 16.9 30.5 30.4 31.4 31.2 14.7 13.3 16.6 17.4 30.5 30.4 30.6 31.3
C 94.6 59.5 94.9 96.7 95.7 95.9 95.7 95.7 94.6 67.2 94.7 96.1 95.7 95.7 95.7 96.1

1 0.25 B −1.3 11.7 0.6 −0.1 2.9 1.5 1.5 2.5 −1.3 10.3 −1.0 −1.4 2.9 1.7 1.7 2.8
S 17.0 15.4 17.5 17.5 32.2 32.0 31.8 32.2 17.0 15.7 17.7 17.6 32.2 32.0 32.0 32.3
E 16.9 15.5 17.5 18.2 32.1 31.9 32.0 32.5 16.9 15.7 17.7 18.4 32.1 31.9 32.1 32.5
C 95.1 86.4 96.0 96.9 96.1 96.4 96.3 96.4 95.1 88.8 95.5 96.7 96.1 96.3 96.3 96.4

1 0.5 B −1.3 21.6 1.8 0.4 2.9 0.4 0.4 2.1 −1.3 18.9 −1.6 −2.0 2.9 0.7 0.7 2.5
S 17.0 14.4 18.2 18.5 32.2 31.9 31.7 32.3 17.0 15.0 18.9 18.7 32.2 31.8 31.8 32.3
E 16.9 14.5 18.2 19.4 32.1 31.7 32.1 32.7 16.9 14.8 18.7 19.8 32.1 31.7 32.1 32.8
C 95.1 65.7 95.5 96.8 96.1 95.9 96.1 96.4 95.1 71.9 95.0 96.8 96.1 96.0 95.4 96.1

X ∼MG, U∗ ∼ N(0, 1) X ∼MG, U∗ ∼MG
β1 β2 β1 β2

r σ2
u NM NV RC IM NM NV RC IM NM NV RC IM NM NV RC IM

0 0.25 B −4.2 21.7 11.7 2.0 5.4 5.0 4.9 5.6 −4.2 19.8 9.6 −0.7 5.4 5.0 4.9 5.5
S 25.5 18.7 21.1 25.2 34.2 34.7 34.5 34.6 25.5 19.6 22.0 26.6 34.2 34.5 34.2 34.3
E 24.2 19.1 21.5 25.7 32.2 32.2 32.4 32.6 24.2 19.7 22.2 27.0 32.2 32.2 32.4 32.6
C 93.4 76.8 89.5 94.2 94.3 94.1 94.4 94.8 93.4 79.1 90.6 94.6 94.3 94.2 94.7 94.8

0 0.5 B −4.2 35.6 19.2 5.2 5.4 4.7 4.6 5.4 −4.2 32.7 15.5 −1.6 5.4 4.7 4.6 5.4
S 25.5 15.8 20.0 26.1 34.2 34.8 34.5 34.8 25.5 17.2 21.6 29.4 34.2 34.7 34.2 34.3
E 24.2 16.5 20.7 27.4 32.2 32.2 32.3 32.8 24.2 17.5 22.0 30.3 32.2 32.2 32.6 32.9
C 93.4 42.2 82.6 94.1 94.3 94.1 94.2 94.6 93.4 51.1 86.7 94.7 94.3 94.2 94.5 94.8

1 0.25 B −4.6 19.8 9.6 −0.3 4.6 3.8 3.9 4.8 −4.6 18.6 8.3 −2.3 4.6 3.8 3.6 4.7
S 25.4 19.2 21.6 26.3 33.4 33.6 33.4 33.6 25.4 19.8 22.3 27.3 33.4 33.4 33.1 33.4
E 24.2 19.6 22.1 26.6 32.3 32.2 32.4 32.7 24.2 20.0 22.6 27.2 32.3 32.2 32.3 32.7
C 93.4 79.2 91.3 94.7 95.3 95.1 95.2 95.5 93.4 81.3 92.1 95.4 95.3 94.3 94.7 94.6

1 0.5 B −4.6 33.6 16.7 1.7 4.6 3.3 3.2 4.8 −4.6 31.4 14.0 −3.9 4.6 3.2 3.2 5.1
S 25.4 16.3 20.6 28.0 33.4 33.6 33.4 33.8 25.4 17.4 21.8 30.7 33.4 33.4 33.1 33.6
E 24.2 17.1 21.7 28.7 32.3 32.1 33.2 33.0 24.2 17.8 22.5 31.6 32.3 32.1 32.8 33.0
C 93.4 48.5 85.7 95.1 95.3 94.9 95.2 95.2 93.4 56.3 88.3 95.8 95.3 94.0 94.6 94.8
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Table 3: Simulation results based on 1000 replications with n = 500, unequal-length intervals and 90% right
censoring on average. Measurement error U = σuU

∗, and U∗ follows the modified gamma distribution. All
entries are multiplied by 100. B ≡ bias, S ≡ standard deviation, E ≡ estimated standard error, C ≡ 95%
coverage probability, MN ≡ Mixture Normal, NM ≡ No measurement error, NV ≡ Naive, RC ≡ Regression
calibration, IM ≡ Imputation method.

X ∼MG, r = 2
β1 β2

σ2
u NM NV RC IM NM NV RC IM

0.25 B −4.8 17.9 7.5 −3.0 4.8 4.0 3.9 5.1
S 27.7 21.8 24.5 30.3 36.3 36.2 36.0 36.3
E 26.3 21.9 24.7 30.3 35.5 35.2 35.4 35.8
C 94.5 82.4 93.0 95.7 94.8 94.8 95.2 95.2

0.5 B −4.8 32.4 13.0 −5.1 4.8 3.3 3.1 5.2
S 27.7 18.0 24.1 34.4 36.3 36.6 36.0 36.6
E 26.3 18.9 24.6 34.7 35.5 35.1 35.5 36.2
C 94.5 55.5 89.5 95.9 94.8 94.8 95.1 95.6

Table 4: Results of the analysis of the ACTG data set (left panel) and the analysis of the ACTG
data set where the values of the surrogate for CD4 were replaced by simulated data (right panel).
Est ≡ Estimate, SE ≡ standard error, NV ≡ Naive, RC ≡ Regression calibration, IM ≡ Imputation
method.

log(CD4) Treatment X Treatment
r Method Est SE p-value Est SE p-value Est SE p-value Est SE p-value
0 NV −2.72 0.50 < 0.01 0.75 0.31 0.016 −0.56 0.23 < 0.05 0.70 0.30 < 0.05

RC −3.29 0.60 < 0.01 0.74 0.31 0.016 −0.65 0.26 < 0.05 0.68 0.31 < 0.05
IM −3.16 0.62 < 0.01 0.73 0.31 0.019 −0.89 0.42 < 0.05 0.71 0.31 < 0.05

1 NV −3.04 0.60 < 0.01 0.85 0.34 0.013 −0.64 0.25 < 0.05 0.73 0.35 < 0.05
RC −3.72 0.72 < 0.01 0.83 0.34 0.015 −0.69 0.28 < 0.05 0.69 0.34 < 0.05
IM −3.62 0.77 < 0.01 0.82 0.35 0.020 −0.96 0.46 < 0.05 0.77 0.34 < 0.05

2 NV −3.39 0.70 < 0.01 0.93 0.38 0.015 −0.65 0.26 < 0.05 0.80 0.36 < 0.05
RC −4.14 0.85 < 0.01 0.93 0.38 0.015 −0.73 0.30 < 0.05 0.82 0.37 < 0.05
IM −4.05 0.93 < 0.01 0.92 0.40 0.021 −1.03 0.51 < 0.05 0.84 0.37 < 0.05
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