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Summary

Accelerated failure time (AFT) model is a well known alternative to the Cox proportional hazard model

for analyzing time-to-event data. In this paper we consider fitting an AFT model to right censored

data when a predictor variable is subject to measurement errors. First, without measurement errors,

estimation of the model parameters in the AFT model is a challenging task due to the presence of

censoring, especially when no specific assumption is made regarding the distribution of the logarithm of

the time-to-event. The model complexity increases when a predictor is measured with error. We propose

a nonparametric Bayesian method for analyzing such data. The novel component of our approach is to

model 1) the distribution of the time-to-event, 2) the distribution of the unobserved true predictor, and 3)

the distribution of the measurement errors all nonparametrically using mixtures of the Dirichlet process

priors. Along with the parameter estimation we also prescribe how to estimate survival probabilities of

the time-to-event. Some operating characteristics of the proposed approach are judged via finite sample

simulation studies. We illustrate the proposed method by analyzing a data set from an AIDS clinical

trial study.
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1 Introduction

Right censored time-to-event data are often analyzed by fitting a Cox proportional hazard (CPH) model.

Although fitting the CPH model and obtaining the estimate of the relative risk parameters via the partial

likelihood method are easy, model parameter interpretation requires the understanding of instantaneous

hazard. On the other hand, the accelerated failure time (AFT) model is easy to interpret. In the AFT

model, logarithm of the time-to-failure T is assumed to be a linear function of the covariates and an

error term which is assumed to be free from the covariates. That means, for the AFT model

log(T ) = βT
1 Z + β2X + e, (1)

where the error e is assumed to follow a distribution with finite variance and is assumed to be independent

of the covariates (ZT, X)T. Here Z is assumed to be a vector of error-free covariates while the continuous

scalar covariate X is not observed in the data. Instead, multiple replications of an erroneous unbiased

surrogate W for X are observed in the data. By unbiasedness we mean E(W |X) = X, and by surrogate

we mean f(T |W,X,Z) = f(T |X, Z) (Carroll [1]). In the error-free case (i.e., when X is accurately

observed) the regression parameters β = (βT
1 , β2)

T are difficult to estimate due to the presence of

censoring especially when the distribution of e is left unspecified. There are several choices for fitting an

AFT model to right censored data, such as Buckley-James estimating equations [2], modified Buckley-

James estimating equations proposed by Lai and Ying [3], some more recent approaches proposed by

Lin and his co-authors [4, 5], and the empirical likelihood approach of Zhou and Li [6]. Although

our interest is in the semiparametric AFT model where e is left unspecified, AFT model can be fitted

assuming some flexible parametric models (Generalized Gamma, log-logistic, Splines, etc.) for e (Cox

et al [7]).

In the error-free AFT model context, Christensen and Johnson [8] first considered the Dirichlet

process prior for nonparametric modeling of the time-to-event, and proposed an elegant semi-Bayesian

approach for estimating survival curves and the finite dimensional regression coefficient. Later, Kuo
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and Mallick [9] considered a mixture of the Dirichlet process prior on e, and Walker and Mallick [10]

proposed to use the Polya tree prior on e and a noninformative prior on the regression coefficients β.

The last two papers considered full Bayesian inferences using the Markov chain Monte Carlo (MCMC)

method.

In this paper we consider fitting an AFT model (1) to right censored data when the scalar covariate

X is measured with error and with repeated measurements at the baseline. The motivation comes from

a clinical study on AIDS. One of the important indicators for the time to AIDS or death of HIV infected

people is the CD4 count at the baseline examination before any treatment starts. The true CD4 count

cannot be measured. Therefore, multiple measurements of a surrogate variable for CD4 count at the

baseline are considered as the erroneous measurements of the true CD4 count. The goal is to estimate the

regression coefficients utilizing the erroneous measurements for CD4 counts. While errors-in-covariate

are a common issue in clinical or observational studies, fitting an AFT model when the predictor is

measured with error has received little attention from researchers. He et al. [11] proposed a simulation

and extrapolation (SIMEX) approach for estimating model parameters when the time-to-event data are

subject to right censoring and a covariate is measured with error. They assumed that 1) the distribution

of e belongs to a known parametric family, and 2) the errors associated with the covariate follow a normal

distribution. These assumptions limit the application of their SIMEX method. Another paper in this

context is by Ma and Yin [12]. They considered a broader issue by proposing a novel method of handling

covariate measurement errors in a semiparametric quantile regression model. However, they require that

the censoring mechanism and the actual time-to-event are marginally independent.

In order to circumvent these issues we propose a general method where 1) we do not make any

parametric assumption regarding the distribution of e, 2) we do not make any parametric assumption

regarding the distribution of the unobserved covariate, 3) we do not make any parametric assumption

regarding the distribution of the measurement errors U in W . All these three issues are handled by

a novel application of the nonparametric Bayesian methods. In particular, in a likelihood framework,
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the distributions of e, X, and U are modeled nonparametrically using a mixture of a finite dimensional

Dirichlet process (FDDP), a special case of stick-breaking prior [13]. In addition to a nonparametric

modeling of e, since our approach does not make any parametric assumption regarding the distributions

of X and U , the method can be considered as a functional approach in view of the modern measure-

ment error literature. Since we use a parametric prior on the unknown regression parameter β along

with nonparametric prior models for the distributions of e, X, and U , we call the proposed method

semiparametric. The novelty of the proposed approach lies in the robustness of the procedure through

nonparametric modeling of several nuisance densities. When a distribution is modeled by a Dirichlet

process (DP) mixture of kernel densities (we have taken them to be normal kernels), the distribution

is essentially modeled by a mixture of infinitely many kernel densities, where the mixing proportions

and the parameters of the kernel densities are random. This structure of the prior model for a density,

in principle, leads to a posterior that is weakly consistent for the true density (Theorems 5.6.1-5.6.3

of Ghosh and Ramamoorthi [14]). This posterior consistency not only holds when the true density

is a mixture of normals, but also when the true density has a compact support, such as the uniform

distribution. In our set up, instead of using a DP, for computational convenience we use a FDDP as a

close approximation of the DP. Since we are modeling three nuisance distributions nonparametrically,

our results are generally robust towards the distributions of e, U , and X.In the simulation studies, we

numerically show the robustness of the proposed method by considering different types of distributions

for e, X, and U , and comparing with some partly semiparametric approaches. In the partly semipara-

metric methods, one of three nuisance infinite dimensional parameters is treated parametrically, and

the results show that lack of proper modeling of at least one nuisance parameter may result in biased

estimates of the regression parameters.

Previously, Müller and Roeder [15] used a nonparametric Bayesian approach for handling errors in a

covariate in case-control studies that do not involve censored subjects. Gustafson et al. [16] considered a

parametric Bayesian method for handling errors in a covariate in case-control studies. Further, Sinha et
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al. [17] considered a nonparametric Bayesian approach for handling errors in a covariate in the logistic

regression model while the effect of the covariate was modeled as a nonparametric function. However,

to the best of our knowledge, our current problem is unique that no one has addressed before. Overall,

our nonparametric Bayesian approach is useful not only for estimating the regression parameters β, but

also for estimating the survival probabilities and the quantiles of the failure time distribution.

A brief outline of the remainder of the article is as follows. Section 2 contains basic models and

assumptions. Section 3 discusses likelihood and priors. Posterior computation and parameter estimation

are given in Section 4. Section 5 outlines some other statistical inferences using the posterior samples.

Sections 6 and 7 are devoted to simulation studies and the analysis of a real data set from an AIDS

clinical trial study, respectively. Concluding remarks are given in Section 8. The details of the MCMC

steps and some further data analysis are relegated to the appendix.

2 Basic models and assumptions

Suppose we observe the data (Vi, ∆i,Wij, j = 1, . . . , m, Zi), i = 1, . . . , n, where Vi = min(Ti, Ci), and

the time-to-failure Ti is assumed to be independent of the censoring time Ci conditional on the observed

covariates (Wi1, . . . , Wim, Zi) and the binary variable ∆i = I(Ti ≤ Ci) denotes the censoring indicator.

For nonparametric modeling of the measurement error distribution we require the number of replications

to be at least two (i.e., m ≥ 2). Even for handling a more restrictive scenario, such as a symmetric error

distribution, one needs m ≥ 2 to identify the error distribution [18]. Without repeated measurements

on W , one needs to specify the distribution of the error for any structural or functional approach. We

assume that Ti follows model (1), and e ∼ Fe which is unknown. Furthermore, assume that Zi is a vector

of error-free covariates, and the surrogate variable WT
i = (Wi1, . . . , Wim) is related to the unobserved

latent variable Xi via the classical additive measurement error model

Wij = Xi + Uij, for j = 1, . . . , m, m ≥ 2,
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where Uij are independent and identically distributed (iid) following a mean zero distribution FU with a

finite variance and are independent of (Vi, ∆i, Xi, Zi). Furthermore, conditional on Z the unobserved X

is assumed to follow a distribution FX(·|Z) which is also unknown. It is known that the naive analysis

of the data by replacing Xi by W i =
∑m

j=1 Wij/m will, in principle, yield a biased estimator of β, and

consequently the estimator of the survival function is biased [12, 19].

It is worth mentioning that without measurement errors and assuming the response variables are

subject to only right censoring, the Buckley-James estimator of β is obtained by solving

S(β; V, X,Z) =
n∑

i=1

(
Zi

Xi

){
T̃i(β)− T̃ (β)− (Zi − Z)Tβ1 − (Xi −X)β2

}
= 0,

where

T̃i(β) = ∆ilog(Vi) + (1−∆i)(Z
T
i β1 + Xiβ2) +

∫∞
ei(β)

udF̂e(u, β)

1− F̂e(ei(β), β)
, T̃ (β) =

1

n

n∑
i=1

T̃i(β), X =
1

n

n∑
i=1

Xi,

Z =
1

n

n∑
i=1

Zi, F̂e(t, β) = 1−
∏

i: ei(β)<t

[
1− ∆i∑n

j=1 I{ej(β) ≥ ei(β)}
]
,

and ei(β) = log(Vi) − ZT
i β1 − Xiβ2. The estimating equation S(β; V, X, Z) = 0 is based upon the

normal equations of the least squares method and is then adjusted for censoring (see [2] for details).The

estimating function S(β; V, X, Z) involves a non-smooth function F̂e(·, β) making the estimating function

non-continuous and non-monotone in β. Commonly, in the traditional functional approach of handling

covariate measurement errors where unobserved X is treated as an unknown constant, one seeks an

estimating function S∗(β; V, W,Z) such that E{S∗(β; V, W,Z)|V, X, Z} = S(β; V,X, Z). However, due

to the presence of F̂e(t, β) in T̃i(β), it is not obvious how to construct such function S∗(β; V, W,Z).

Alternatively, for this problem with four infinite-dimensional nuisance parameters: a) the distribution of

e, b) the distribution of the censoring process, c) the distribution of X given Z, and d) the distribution of

the measurement errors, it would be interesting to investigate the existence and computational feasibility

of an efficient estimator along the lines of Ma and Li [20] and Ma and Carroll [21]. The most challenging
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aspect will be handling the censoring process that may depend on Z. To circumvent these issues we

propose a likelihood based approach with only a few general regularity assumptions on these nuisance

distributions, and statistical inferences are made using the MCMC method.

3 Likelihood and priors

In the Bayesian analysis, likelihood function takes a key role. For this purpose we assume that e, X,

and U are absolutely continuous random variables and define Se(·) = 1 − Fe(·), fe(e) = dFe(e)/de,

fX(x|Z) = dFX(x|Z)/dx, and fU(u) = dFU(u)/du. Then the likelihood of the observed data ignoring

the components related to the censoring is

Lobs =
n∏

i=1

∫
S1−∆i

e (log(Vi)− βT
1 Zi − β2Xi)f

∆i
e (log(Vi1)− βT

1 Zi − β2Xi)fX(Xi|Zi)
m∏

j=1

fU(Wij −Xi)dXi.

For nonparametric modeling of Fe, FX(·|Z), FU , often times a DP mixture model is used that can

essentially capture any shape for the distribution of the underlying variable. However, the computation

involving a DP prior is time consuming, and it is proportional to the sample size. For efficient com-

putation we shall use a FDDP prior. Before we describe the FDDP, we provide a general definition

of the stick breaking process. A stick-breaking process is a random probability measure P defined as

P(A) =
∑N

k=1 pkδYk
(A) for a measurable set A. Here δYk

(·) denotes a measure concentrated at Yk, Yk’s

are iid from a distribution H, N is the number of components, and pk’s are random probabilities such

that 0 ≤ pk ≤ 1 and
∑N

k=1 pk = 1. Since pk’s and Yk’s are random, P(A) is also random. The name

stick-breaking comes due to the structure of random weights pk’s, where

p1 = V1, p2 = (1− V1)V2, . . . , pk = (1− V1) · · · (1− Vk−1)Vk,

and Vk
indep∼ Beta(ak, bk) are assumed to be independent of Yk’s. This process allows finite and infinite val-

ues of N . As special cases it includes Dirichlet process, Poisson-Dirichlet process, Dirichlet-multinomial

process, etc. [13]. For a DP, ak = 1, bk = α, and N = ∞, and it is denoted by DP (αH). A FDDP, de-

noted by DPN(αH), has a finite number of components N and (p1, . . . , pN) ∼ Dirichlet(α/N, . . . , α/N)
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[22]. Theorem 2 of Ishwaran and Zarepour [22] states that for any real valued measurable integrable

function g, DPN(αH)(g)→DP(αH)(g) in distribution as N → ∞. They also described a convenient

mechanism of selecting N , the maximum possible cluster size. We shall use Ne, Nu, and Nx to denote

N for the FDDPs corresponding to e, U , and X, respectively.

Now we assume that

ei|θie
indep∼ Normal(θie,1, θie,2), θie = (θie,1, θie,2),

θie|Pe
iid∼ Pe (a random distribution),

Pe ∼ DPNe(αeH0e), i = 1, . . . , n.

The random probability measure Pe follows a FDDP with the base probability measure H0e on R×R+,

and H0e is viewed as the center of the random process Pe. The above assumption implies that for

any measurable set A, the prior expectation of the probability that θe ∈ A under the probability

measure DPNe(αeH0e) is E{prPe
(θe ∈ A)} = prH0e

(θe ∈ A), and var{prPe
(θe ∈ A)} = prH0e

(θe ∈
A){1 − prH0e

(θe ∈ A)}(1 + αe/Ne)(1 + αe)
−1. Thus, larger values of αe lead to smaller variance of

prPe
(θe ∈ A). Therefore, αe can be interpreted as a precision parameter. We assume that under H0e,

θe,2 ∼ IG(aσe , bσe) (IG ≡ Inverse Gamma), and conditional on θe,2, θe,1 ∼ Normal(me, τeθe,2). Using the

prior assumption on θie we can now write

fe(e|p1e, . . . , pNee, Y1e, . . . , YNee) =
Ne∑

k=1

pke
1√

2πθe,2

exp

{
−(e− θe,1)

2

2θe,2

}
δYke

(θe),

(p1e, . . . , pNee) ∼ Dirichlet(αe/Ne, . . . , αe/Ne),

Yke
iid∼ H0e.

In Appendix A1 we give a brief discussion connecting the nonparametric kernel smoothing and Dirichlet

process mixture ideas for density estimation.

7



We model FX(·|Z) as a FDDP mixture of normal distributions. In other words, we assume that

Xi|Zi, γ1, θix
indep∼ Normal(θix,1 + ZT

i γ1, θix,2), θix = (θix,1, θix,2)
T,

θix
iid∼ Px (a random distribution),

Px ∼ DPNx(αxH0x),

where H0x is the base probability measure on R × R+ and αx is the precision parameter. Under

H0x, we assume that θx,2 ∼ IG(aσx , bσx), and conditional on θx,2, θx,1 ∼ Normal(mx, τxθx,2). An alter-

native statement of the above model is that fX(x|Zi, γ1) =
∫

fX,Px(x|Zi, γ1)dDPNx(Px; αxH0x), where

fX,Px(x|Zi, γ1) =
∫

(1/
√

2πθix,2) exp{−(x−ZT
i γ1−θix,1)/2θix,2}dPx(θix). If we knew the true Px, say Px0,

we would model the distribution of X as fX,Px0(·) without requiring a FDDP prior on Px. Furthermore,

fX(x|Z, γ1, p1x, . . . , pNxx, Y1x, . . . , YNxx) =
Nx∑

k=1

pkx
1√

2πθx,2

exp

{
−(x− θx,1 − ZT

i γ1)
2

2θx,2

}
δYkx

(θx),

(p1x, . . . , pNxx) ∼ Dirichlet(αx/Nx, . . . , αx/Nx),

Ykx
iid∼ H0x.

Now we model FU(·). Although symmetric measurement error is a commonly used assumption [18, 23],

for m ≥ 2 one can still identify the distributions of U and X as long as U has mean zero and finite

variance [24]. Therefore, in our development we use the weaker assumption that the distribution of

Uij = Wij−Xi has mean zero and finite variance and model it as a finite-dimensional centered Dirichlet

process (CDP) mixture of a normal kernel [25]. For notational convenience we shall use the index

l = m(i− 1) + j to identify duplex (i, j) for i = 1, . . . , n, j = 1, . . . , m. Thus, we consider

Uij|θlu
indep∼ 1√

2πθlu,2

exp

{
−(Uij − θlu,1)

2

2θlu,2

}
, θlu = (θlu,1, θlu,2)

T,

θlu|Pu
iid∼ Pu (a random distribution with mean zero),

Pu ∼ CDPNu(αuH0u).
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More specifically, the zero mean of Uij is ensured by the fact that E(θlu|Pu) = 0 when Pu is randomly

drawn from the CDPNu(αuH0u). Now we write

fU(W −X|p1u, . . . , pNuu, Y1u, . . . , YNuu) =
Nu∑

k=1

pku
1√

2πθu,2

exp

{
−(W −X − θu,1)

2

2θu,2

}
δYku

(θu),

(p1u, . . . , pNuu) ∼ Dirichlet(αu/Nu, . . . , αu/Nu),

Yku = Y ∗
ku − µ∗u,

µ∗u =
Nu∑

k=1

pkuY
∗
ku,

Y ∗
ku

iid∼ H0u.

Here H0u is the base probability measure on R × R+. Under H0u we assume that the second com-

ponent of Y ∗
ku, Y ∗

ku,2 ∼ IG(aσu , bσu), and conditional on Y ∗
ku,2, the first component of Y ∗

ku, Y ∗
ku,1 ∼

Normal(mu, τuY
∗
ku,2). We further assume that a priori β1 ∼ Normal(µβ1 , Σβ1), β2 ∼ Normal(µβ2 , σ

2
β2

),

and γ1 ∼ Normal(µγ1 , Σγ1). On αe, αu, and αx we put Gamma(aαe , bαe), Gamma(aαu , bαu), and

Gamma(aαx , bαx) priors, respectively. Also, we assume that a priori τe ∼ IG(ge, he), τu ∼ IG(gu, hu),

and τx ∼ IG(gx, hx). We use IG(ηe, ζe), IG(ηu, ζu), and IG(ηx, ζx) priors on bσe , bσu , and bσx , respectively.

Further notations are needed for posterior computation. Define ΘT
e = (θ1e, . . . , θne), ΘT

x =

(θ1x, . . . , θnx), and ΘT
u = (θ1u, . . . , θMu), where M = n ×m. Let φe be an Ne × 2 matrix that contains

Ne distinct elements of Θe. Similarly define φx and φu. For updating random elements of Θe, define

configuration indicators sT
e = (s1e, . . . , sne) such that sie = j if θie = φje, j = 1, . . . , Ne, i = 1, . . . , n.

Also define the size of the jth cluster ne
j =

∑n
i=1 I(sie = j), for j = 1, . . . , Ne. Thus, 0 ≤ ne

j ≤ n and
∑Ne

j=1 ne
j = n. Similarly, define nx

j =
∑n

i=1 I(six = j) that satisfies 0 ≤ nx
j ≤ n and

∑Nx

j=1 nx
j = n, and

nu
j =

∑M
l=1 I(slu = j) with 0 ≤ nu

j ≤ M and
∑Nu

j=1 nu
j = M .

Since knowing se and φe is equivalent to knowing Θe, in the MCMC method Θe is updated via

resampling se and φe. Similarly, sx, su can be defined, and Θx is updated by resampling sx and φx and

Θu is updated by resampling su and φu. From now on, we shall write θie as φT
siee = (φsiee,1, φsiee,2).
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Similarly, we shall use φsixx and φsluu instead of θix and θlu.

4 Posterior computation and parameter estimation

Inference regarding the parameters are made from the respective posterior distribution. Using the

MCMC method we draw random numbers from the posterior distribution.

Define T ∗
i = log(Ti). When ∆i = 0 the value of T ∗

i is unknown. Then it will be treated as an

unknown parameter in our Bayesian computation and resampled conditional on the observed data

and the other parameters. The important feature of the following MCMC technique is that all the

conditional distributions except the one related to αe, αu, and αx are in the form of standard well

known distributions. We follow Ishwaran and James [13] for updating the parameters related to the

stick-breaking priors.

In the MCMC method we repeat the Steps 1-8 (given in Appendix A2) for a large number (e.g.,

20,000) of iterations. Along with the unknown parameters and hyperparameters we shall resample all

Xi’s for i = 1, . . . , n, and T ∗
i for those i where ∆i = 0.

After discarding the first a few thousands of samples (e.g., 5,000) as burn-in (see, e.g., [27]), we shall

consider the remaining MCMC samples as the random numbers from the joint posterior distribution of

the parameters. These sampled observations will be used for calculating parameter estimates and other

statistics.

5 Other statistical inferences based on posterior samples

5.1 Estimation of survival probabilities

In addition to the estimation of β’s in the AFT model (1), another key objective in this context is to

estimate the survival probability pr(T ≥ t0|X0, Z0, Θ) for given t0, X0, and Z0, where Θ denotes the

set of all parameters. Let π(Θ|D) be the generic notation for the posterior distribution of Θ given the
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observed data D. Then a random number from the posterior distribution of the survival probability

can be obtained by computing pr(T ≥ t0|X0, Z0, Θ) when Θ is randomly drawn from π(Θ|D). A

Bayes estimator of this survival probability is the posterior mean p̂r(T ≥ t0|X0, Z0, Θ) =
∫

pr(T ≥
t0|X0, Z0, Θ)π(Θ|D)dΘ that can be estimated by taking the Monte Carlo average of

1−
Ne∑

k=1

pkeΦ

{
log(t0)− βT

1 Z0 − β2X0 − θke,1√
θke,2

}

over B (e.g., B = 10, 000 or more) MCMC samples of (βT
1 , β2, θ

T
ke, pke) drawn from their joint posterior

distribution.

5.2 Model selection

In clinical studies we are also interested in testing hypotheses, such as H0: β2 = 0 versus H1: β2 6= 0.

In the Bayesian set-up one can conduct hypothesis testing by calculating the Bayes factor BF =

pr(D|H1)pr(H0)/{pr(D|H0)pr(H1)}, where pr(H0) and pr(H1) are the prior probabilities of H0 and

H1, pr(D|Hk) =
∫

pr(D|Θk)π(Θk) dΘk for k = 0, 1 with Θk being the finite and infinite dimensional

parameter under the hypothesis Hk, and π(Θk) is the corresponding prior distribution. Usually BF

larger than 10 indicates a strong evidence for the alternative model specified by H1. Following Newton

and Raftery [28] we shall calculate the marginal probability or likelihood pr(D|Hk) using the harmonic

mean:

pr(D|Hk) =

[
E

π(Θk|D)

{
1

L(D|Θk)

}]−1

that can be estimated by [B−1
∑B

b=1 L−1(D|Θ(b)
k )]−1, where (Θ

(1)
k , . . . , Θ

(B)
k ) are B MCMC samples from

the posterior distribution π(Θk|D). Since under the Bayesian set-up unobserved Xi is also considered

as an unknown parameter, the likelihood is, under H0,

L(D|Θ0) =
n∏

i=1

(
1√

2πφsiee,2

exp

[
−{log(Vi)−βT

1 Zi − φsiee,1}2

2φsiee,2

])∆i
{
1−Φ

(
log(Vi)−βT

1 Zi − φsiee,1√
φsiee,2

)}1−∆i

×
m∏

j=1

1√
2πφsluu,2

exp

{
−(Wij−Xi− φsluu,1)

2

2φsluu,2

}
1√

2πφsixx,2

exp

{
−(Xi − φsixx,1 − ZT

i γ1)
2

2φsixx,2

}
,
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and similarly under H1,

L(D|Θ1) =
n∏

i=1

(
1√

2πφsiee,2

exp

[
−{log(Vi)− βT

1 Zi − β2Xi − φsiee,1}2

2φsiee,2

])∆i

×
{

1− Φ

(
log(Vi)− βT

1 Zi − β2Xi − φsiee,1√
φsiee,2

)}1−∆i

×
m∏

j=1

1√
2πφsluu,2

exp

{
−(Wij−Xi− φsluu,1)

2

2φsluu,2

}
1√

2πφsixx,2

exp

{
−(Xi − φsixx,1 − ZT

i γ1)
2

2φsixx,2

}
.

In the real data analysis this Bayes factor approach will also be used for model comparisons where

we compute marginal probability of D under a given model. One numerical problem in calculating
∑B

b=1 1/L(D|Θ(b)
k ) is that often times l

(b)
k = log{L(D|Θ(b)

k )} is a large positive or negative number

in the order of 1,000, making it impossible to calculate the quantity. Thus, we adopt the following

approximation using the Taylor series expansion:

B∑B
b=1 exp(−l

(b)
k )

≈ B∑B
b=1{exp(−µlk)− (l

(b)
k − µlk) exp(−µlk) + 0.5(l

(b)
k − µlk)

2 exp(−µlk)}
= exp(µlk)(1 + 0.5σ2

∗,k)
−1,

where µlk =
∑B

b=1 l
(b)
k /B and σ2

∗,k =
∑B

b=1(l
(b)
k − µlk)

2/B. Hence based on this approximation

log{pr(D|Hk)} ≈ µlk − log(1 + 0.5σ2
∗,k).

6 Simulation studies

Simulation design: While a violation of model assumptions may lead to biased estimates of the

parameters, the amount of bias depends on the degree of violation, and intricate interplay among

the several model assumptions and their violations. We conducted simulation experiments with several

scenarios, but due to limited space we shall discuss mainly two scenarios that clearly show the advantage

of the proposed method in terms of bias whereas for the other scenarios the semiparametric and partly

semiparametric (we shall discuss it in the next paragraph) approaches are comparable. We point out

that inconsistency of partly semiparametric methods are manifested via large bias in the parameter
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estimates. We simulated a cohort of size n = 200 and 300, by simulating Z ∼ Normal(0, 1), and then X

and e in the following scenarios. Finally, we obtained T by setting log(T ) = 1+Z+2X+e. Two (m = 2)

erroneous measurements Wi1 and Wi2 were obtained by adding Ui1 and Ui2 with Xi, for i = 1, . . . , n.

For scenario 1, e ∼ Exponential(1), X ∼ 0.2Z + (1/3)Normal(0, 0.72) + (2/3)Normal(2, 0.32), and

U ∼ Gamma(1, 1) − 1. To create approximately 25% and 50% censored data the censoring variable

was simulated as C = 0.5X2 + Unif(0, 2, 000) and C = 0.5X2 + Unif(0, 400), respectively. For scenario

2, e ∼ t3, X ∼ {Gamma(6, 0.5) − 3}/1.22, U ∼ Normal(0, 0.712), and C followed two distributions:

C = 0.5Z2 + 0.5X2 + Unif(0, 40) and C = 0.5Z2 + 0.5X2 + Unif(0, 5), for 25% and 50% censoring,

respectively. For both scenarios we took var(U)/var(X)× 100% = 50% to closely match with the noise-

to-signal ratio of the real data. Note that in these scenarios C violates our assumption by making it

depend on unobserved X variable. The results when C does not depend on X are similar, thus is omitted.

Also, we have intentionally taken nonnormal distribution for e, U , and X, to show the robustness of

our approach. For completeness, we also ran additional simulations with normal distributions for X, e,

and U . The results indicate that SP, SPPE, SPPU, and SPPX worked equally well in this case. The

details are omitted.

Methods for the analyses: The observed data were (Vi, ∆i, Zi,Wij, j = 1, 2, i = 1, . . . , n), and

X was no longer used in the analysis stage. The first method is the naive method, where we used

W i =
∑2

j=1 Wij/2 in place of Xi in the Buckley-James method and used an existing program to

compute the estimates (bj within the R package rms), and this approach will be referred to as the

naive method. Next, we analyzed the data using the regression calibration (RC) approach. Here we

assume that W i|Xi ∼ Normal(Xi, σ
2
w|x) and Xi|Zi ∼ Normal(γ0 + γ1Zi, σ

2
x|z) which imply Xi|W i, Zi ∼

Normal[(σ−2
x|z + σ−2

w|x)
−1{(γ0 + γ1Zi)σ

−2
x|z + W iσ

−2
w|x}, (σ−2

x|z + σ−2
w|x)

−1]. We then analyzed the data with

Xi being replaced by X̂i = (1/σ̂2
x|z + 1/σ̂2

w|x)
−1{(γ̂0 + γ̂1Zi)/σ̂

2
x|z + W i/σ̂

2
w|x} in the Buckley-James

method. Here γ̂0 and γ̂1 are the estimated coefficients obtained by regressing W i on Zi, i = 1, . . . , n,

σ̂2
w|x = (2n)−1

∑n
i=1(Wi1−Wi2)

2 and σ̂2
x|z = (n− 2)−1

∑n
i=1(W i− γ̂0− γ̂1Zi)

2− σ̂2
w|x. Next, we analyzed
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the data using the proposed method which is referred to as the semiparametric method (SP) where we

treated all three infinite dimensional nuisance parameters nonparametrically.

One may analyze these data sets using several parametric and partly semiparametric approaches. In

principle, these approaches may produce biased results when the parametric assumptions are violated.

For the sake of comparisons, here we also analyzed the data sets using three partly semiparametric

approaches denoted by SPPE, SPPU, SPPX, where two of the three nuisance parameters were treated

nonparametrically while the third was treated parametrically. The SPPE model is the same as SP

model except that e is modeled parametrically as e ∼ Normal(θe,1, θe,2), θe,2 ∼ IG(aσe , bσe), θe,1|θe,2 ∼
Normal(me, τeθe,2), τe ∼ IG(ge, he), bσe ∼ IG(1, 1). The SPPU model is the same as the SP model

except that U is modeled parametrically as U = W − X ∼ Normal(0, θu), θu ∼ IG(aσu , bσu), bσu ∼
IG(1, 1). The SPPX model is the same as the SP except that X given Z is modeled parametrically

as X|Z ∼ Normal(θx,1 + γT
1 Zi, θx,2), θx,2 ∼ IG(aσx , bσx), θx,1|θx,2 ∼ Normal(mx, τxθx,2), bσx ∼ IG(1, 1),

τx ∼ IG(gx, hx).

Although the general modeling technique and inference method of SP are described in Sections 3

and 4, some necessary details are described in this paragraph. Before each analysis we re-centered the

W values by subtracting the sample mean of all the W ’s from W itself. For the Bayesian methods (SP,

SPPE, SPPU, SPPX), posterior inference was made through the MCMC method with 20,000 iterations

using the following priors and hyperparameters. We took the RC estimates of β1 and β2 as the prior

mean of β1 and β2, and used 5 as the prior variance for β1 and β2. We used γ̂1 as the prior mean

for γ1 and used 2 times the corresponding standard error as the prior standard deviation of γ1. We

set aαe = aαu = aαx = bαe = bαu = bαx = 1 that lead to an Exponential(1) prior for the precision

parameters that covers a wide range of plausible values. Then we set ηe = ζe = ηu = ζu = ηx = ζx = 1,

ge = he = gu = hu = gx = hx = 1. By setting these parameters of the inverse gamma distribution to

be both 1, we allow very large finite variances of the distributions of the hyperparameters that in turn
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result in estimates that are less affected by the prior choice. In addition, we set me = mu = mx = 0

that are involved in the base probability measure of the FDDPs. Consider the case of θe = (θe,1, θe,2)
T .

Conditional on θe,2 and τe, under the base measure of the FDDP, we assumed θe,1 ∼ Normal(me, τeθe,2).

For any choice of me, this normal distribution can cover a wide spectrum of values for appropriate choice

of τe and θe,2. Thus, even a completely wrong choice of me is compensated by flexible values of τe and

θe,2 supported by their almost non-informative prior distributions. Thus, following the same analogy for

mu and mx as well, the choice of me,mu,mx does not need to be perfect. We initialize τe = τu = τx = 1,

αe = αu = αx = 2, Xi = X̂i, and set β to the regression calibration estimates of β and γ1 to γ̂1.

The “error” in approximating a DP by a FDDP can be measured via the L1 difference between two

marginal probabilities, one corresponding to the FDDP and the other corresponding to the DP. Had we

observed e1, . . . , en, then based on our model assumption on the distribution of e of the AFT model we

could write fNe(e1, . . . , en) ≡ ∫ {∫ ∏n
i=1 f(ei|θie)dPe(θie)}dDPNe(Pe; αeH0e), and had we assumed that

Pe ∼ DP(αeH0e), then f∞(e1, . . . , en) ≡ ∫ {∫ ∏n
i=1 f(ei | θie)dPe(θie)}dDP(Pe; αeH0e). Ishwaran and

Zarepour [22] showed that
∫ |fNe(e1, . . . , en)−f∞(e1, . . . , en)|de1 · · · den ≈ 4n exp{−(Ne−1)/αe}. With

Ne = 50, αe = 1, and n = 1, 036 (the sample size for the data) the error is 2.173×10−18, and for αe = 2,

it is 9.489 × 10−08. Our numerical experience shows that all precision parameters αe, αu, and αx are

usually smaller than 1, and as long as the error (= 4n exp{−(Ne − 1)/αe}) is in the order of 10−5, the

results do not vary much with the choice of Ne. We have used the same analogy in choosing Nu and Nx

both equal to 50.

Results: We report the estimated bias (Bias), empirical standard deviations of the estimates (SD),

and mean squared error (MSE) based on 500 replications. Tables 1 and 2 contain results for scenarios 1

and 2, respectively. All methods show finite sample bias, and for the naive, RC, and partly semiparamet-

ric methods usually bias (see the estimates of β2) increases with the censoring percentage. However, the

naive estimates are much more biased than any other methods. Although the RC method is generally

inconsistent, for small values of β2 (β2 < 1), and relatively small measurement errors, the RC estimates
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are pretty satisfactory (not presented here). However, in scenarios 1 and 2, RC estimates are quite

biased. Considering the bias of all methods in different scenarios, the SP method becomes the most

robust approach. In Table 1, other than the naive and RC methods, the largest bias is seen in SPPX

and then SPPU. However, SPPE where a normal model is used for e turned out to be comparable with

the our proposed model SP. An intuitive explanation is that larger values of T involving larger values

of e are likely to get censored more often. The tail probabilities of e, needed for handling censored

data, are moderately well approximated by tail probabilities of a normal distribution when the true

distribution of e is Exponential(1). Table 2 clearly shows that if the model assumption regarding e is

grossly violated that could affect adversely the parameter estimates, which is evident in large bias in

the SPPE method. The second largest bias is shown in SPPX. SPPU performs as good as SP, as the

normal distribution assumption on U holds true in this scenario.

Of course, as a price for the robustness, the SD of the SP method is often slightly larger than the

competing methods but the MSEs are relatively comparable. The SD of the estimates decreases with

sample size, and it increases with the percentage of censoring. The difference between the SP and other

partly semiparametric approaches is not as large as the difference between the SP and RC methods.

The reason lies in the fact that in other partly semiparametric methods two of the three nuisance

parameters are nonparametrically modeled that reduces the degree of model violations. Of course, the

bias reduction achieved in the SP compared with other partly semiparametric approaches indicates the

supremacy of flexible modeling of all three nuisance parameters.

Prompted by a referee’s comment, we re-ran the simulation study for scenario 1 with Ne = Nu =

Nx = 100. The results are presented in Table 3. A close comparison between Tables 1 and 3 reveals

that there are no qualitative differences in these results.

In addition to the simulation studies described above, we conducted a small scale simulation to com-

pare the performance of the proposed method with the SIMEX approach. Here we took the semipara-

metric AFT model where e was left unspecified. In the first SIMEX approach (refer to as SIMEX1) we
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considered one of the two measurements of W as the erroneous measurement and estimated the measure-

ment error variance with
∑n

i=1(Wi1−Wi2)
2/(2n). SIMEX1 does not use all the available data. It is thus

likely to lead to more bias. In the second SIMEX (refer to as SIMEX2) we used W i = (Wi1 + Wi2)/2 as

the erroneous measurement and estimated the measurement error variance with
∑n

i=1(Wi1−Wi2)
2/(4n).

We used symmetric and asymmetric measurement error distributions, and used two different values for

the measurement error variance var(U) = 0.5 and var(U) = 1. For comparisons we also present the

naive and the regression calibration along with our SP method. The results are given in Table 4. For

obvious reasons SIMEX1 is worse than SIMEX2. When var(U) = 0.5 the performance of SIMEX2 and

SP are similar. However, for var(U) = 1 the bias in SIMEX2 is much larger than SP. Large finite sample

bias is a reflection of possible inconsistency of SIMEX. Although the bias of the SIMEX estimates seem

to be not much affected by the non-normal measurement error, SIMEX is shown to be consistent only

in a handful of cases with normal measurement errors and correct extrapolating function.

It is seen that while SP greatly reduces the bias, it is also accompanied by larger variance compared

with the naive or the RC approach. This phenomenon is expected since any method that takes into

account measurement errors in a covariate would generally result in larger uncertainty in the parameter

estimators than the methods that fail to consider the measurement error issue in the analysis. Also,

the variances of the estimators increase with the measurement error variance (See Table 4), and so

are the MSEs. In our simulation, the bias of the inconsistent methods (such the naive and RC) is

overwhelmingly larger than their corresponding variances, resulting in larger MSEs for the naive and

RC methods compared with SP. Of course, there is no guarantee that SP would always have smaller

MSE than the inconsistent approaches; eventually it all depends on whether the bias over weights the

estimation variance (uncertainty) that in turn depends on the measurement error variance. Lastly, we

would like to point out that although MSEs are presented in all the tables, MSE may not be a good

measure to compare consistent and inconsistent estimators.
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7 Analysis of the data from an AIDS clinical trial study

This data set comes from a randomized, double-blind trial on AIDS known as ACTG 175 study. One

of the study aims is to understand the effect of several antiretoviral drugs on human immunodeficiency

virus-1 (HIV-1) infected people who had no history of an AIDS-defining illness other than minimal

mucocutaneous Kaposis sarcoma (see [29] for details).

Subjects were randomly assigned to one of the four therapies, 600mg of zidovudine, 600mg of zi-

dovudine plus 400mg of didanosine, 600mg of zidovudine plus 2.25mg of zalcitabine, and 400mg of

didanosine. In our analysis, the event is the development of the acquired immunodeficiency syndrome

(AIDS) or death, and T is defined as the time (in days) from the start of the treatment to the occur-

rence of the event. According to the ACTG 175 study, for this group of patients, AIDS and death were

considered as the primary end points as both were related to at least 50% decline in CD4 counts [29].

For our analysis we considered only n = 1, 036 subjects who did not have antiretroviral treatment

before this trial. Among them 262, 257, 260, 257 subjects received the above 4 treatments, respectively.

These subjects had two (i.e., m = 2) baseline measurements of CD4 counts prior to the start of their

treatment. Among the 1,036 subjects 85 experienced the above event and the median and average

follow-up time were approximately 27 and 32 months, respectively.

We fit model (1) to this data set, where the logarithm of the actual CD4 count at the baseline minus

5.89 is considered as X. The choice of 5.89 is to make the distribution centered around 0. Note that the

exact CD4 count in the blood is impossible to measure mainly due to constant movement of these cells

between blood and tissues. Additionally, within a short time span (a few days) small changes may occur

in the CD4 count due to physical activity, stress, good night’s sleep, etc. Therefore, the two baseline

measurements are considered to be two erroneous measurements Wi1 and Wi2 for Xi, i = 1, . . . , 1036.

The estimated noise-to-signal ratio is v̂ar(U)/v̂ar(X)× 100% = 42%.

The three dummy variables corresponding to the four treatments are considered to be error free
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covariates Z, where 600mg of zidovudine was considered as the reference category. We analyzed the

data using NV, RC, SP, SPPE, SPPU, and SPPX, and the results are presented in Table 5. For SP

we used Ne = Nu = Nx = 50. For RC, the 95% confidence intervals were calculated based on 1,000

bootstrap samples.

Based on the 95% confidence intervals and credible intervals all methods indicate that log(CD4)

has a statistically significant effect on the time-to-event. More importantly, after adjusting for the

measurement errors, the estimate of the coefficient for CD4 counts, β2, is quite different in the SP

method from the naive estimate. Clearly, for β2, the naive estimate is closer to zero than the estimates

from the other methods, a trend that is also observed in the simulation studies. The results of SP

also indicate that compared with zidovudine, the other three therapies have statistically significant

effect on delaying the time-to-event. This result is consistent with the findings of Hammer et al. [29].

Figure 1 shows the estimated survival probabilities and 95% pointwise credible intervals based on SP

for each treatment group when CD4 counts were 232 and 539, the approximate 10th and 90th quantiles

of baseline CD4 measurements of the subjects. We found that between the competing hypotheses, H0:

β2 = 0 versus H1: β2 6= 0, the data unequivocally support H1 as the Bayes factor was much larger than

10. Note that the analysis of this data set by SP with 60,000 MCMC iterations took approximately 3

minutes in a 2.8GHz Intel Xenon X5560 processor.

We also analyzed the data using a piecewise exponential (PE) model, i.e., we assumed that the

hazard of the time-to-event is λ(t|X, Z) = λs exp(βT
1 Z + β2X) for ts−1 ≤ t < ts, s = 1, . . . , q, where the

time axis is partitioned into [t0, t1), . . . , [tq−2, tq−1), [tq−1, tq), with t0 = 0 and tq = ∞. First we carried

out a naive analysis (NVPE) where we fit the PE model by replacing Xi by W i. Then we conducted a

RC analysis (RCPE) by fitting the PE model where Xi was replaced by X̂i defined in the “Methods”

part of Section 6. Third, we fit the PE model with a parametric correction for the measurement errors

(PCPE) where we assumed that X given Z followed a Normal(γ0 + γT
1 Z, σ2

x) and U ∼ Normal(0, σ2).
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The likelihood of the data is

L =
n∏

i=1

∫ { q∑
s=1

λsI(ts−1 ≤ Vi < ts) exp(βT
1 Zi + β2Xi)

}∆i

exp

{
−

q∑
s=1

λsI(ts−1 ≤ Vi) exp(βT
1 Zi + β2Xi)

}

× 1√
2πσ2

x

exp

{
−(Xi − γ0 − γT

1 Zi)
2

2σ2
x

}
× 1

(2πσ2
u)

m/2
exp

{
−

m∑
j=1

(Wij −Xi)
2

2σ2
u

}
dXi.

In all three methods the parameters were estimated in a Bayesian framework using the MCMC method.

Here we assumed a priori λs ∼ Gamma(aλ, bλ), β1 ∼ Normal(µβ1 , Σβ1), β2 ∼ Normal(µβ2 , σ
2
β2

),

γ0 ∼ Normal(µγ0 , σ
2
γ0

), γ1 ∼ Normal(µγ1 , Σγ1), σ2
x ∼ IG(aσx , bσx), and σ2

u ∼ IG(aσu , bσu). The MCMC

details are given in Appendix A3. In particular, we took q = 5 and partitioned the time axis as

[0, t0.2), [t0.2, t0.4), [t0.4, t0.6), [t0.6, t0.8), [t0.8,∞), where tr denotes the rth quantile of the observed failure

times. The prior means of β’s were the regression calibration estimates of the Cox proportional hazard

model and 5 was used as the prior variance for all parameters. We set µγ0 = γ̂0, µγ1 = γ̂1, where γ̂0

and γ̂1 denote the estimated intercept and partial slopes for the linear regression of W i on Zi. Two

times the square of the corresponding standard errors were used as the prior variance. Finally, we used

aσx = aσu = bσx = bσu = 1. The results are given in the lower panel of Table 5. These results, like the

SP analysis, also indicate that the treatments are significantly associated (based on the 95% credible

interval) with the time-to-event. In particular, compared with zidovudine, the other treatments reduce

the hazard of the event. In addition, log(CD4) is significantly negatively associated with the hazard of

the time-to-event, a consistent finding with the SP analysis.

Since SP, SPPE, SPPU, SPPX, and PCPE are all Bayesian methods, we were able to compare these

approaches using marginal probabilities pr(D|M) where M stands for a generic model. Figure 2 shows

the boxplot of l
(b)
M based on the MCMC samples after discarding the first 10,000 burn-in samples. The

range of its values clearly indicates that a straightforward estimate of pr(D|M) using the harmonic

mean is not possible. Therefore, we adopted the approximation given in Section 5.2 and obtained

log{pr(D|M)} as 3306.63, 3292.64, 3022.74, 2937.14, and −171.93 for SP, SPPE, SPPU, SPPX, and

PCPE, respectively. The above results along with equal prior probability for each of the model in Bayes
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factor calculations indicate that the SP model is the best and is closely followed by the SPPE model.

This explains why the β2 estimates in these two methods are so close.

8 Conclusions

In this paper we proposed a nonparametric Bayesian method for fitting the accelerated failure time

model to a right censored data when a covariate is measured with error. We believe that our approach

is the first attempt to solve this problem in a nonparametric framework. While we nonparametrically

treat the three components (the stochastic noise of the model for the time-to-event, the distribution

of the latent unobserved true covariate, and the distribution of the zero mean measurement errors),

the computation is simple and easily programmable due to the novel application of the stick-breaking

priors. Due to nonparametric modelling of all nuisance distributions the proposed method outperforms

the naive, regression calibration, SIMEX, and other partly semiparametric methods in our simulation

studies.

In this work, for notational simplicity we have assumed the number of the replications of the surro-

gate for the true covariate to be the same across all the subjects (i.e., mi = m). This assumption can

be relaxed by using some more intense notations with some general regularity conditions on mi. Fur-

thermore, in principle, the proposed method can be extended to handle interval censored data [30]. For

this purpose, in the posterior computations one should generate T ∗
i from a normal distribution which

is truncated on both sides. In this work we used the Monte Carlo estimates for estimating survival

probabilities. We believe that using the importance sampling method with proper importance weights

one may improve the efficiency of the estimator. We have focused on time invariant covariate. However,

the measurement error issue may arise in a time varying covariate; see, for example, Veronesi et al. [31]

who considered the RC and SIMEX methods for handling such a covariate in a Cox regression model.

Another interesting paper in this area is by Crowther et al. [32] who considered joint modeling of sur-

vival outcome using a semiparametric Cox model and longitudinally measured prognostic biomarkers
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using a linear mixed model. It is worth investigating how the nonparametric approaches considered in

this paper could be implemented in these settings. The computational code can be obtained from the

authors upon request. We are also creating an R-package for practitioners to use that will be available

through our website.

Finally, we briefly discuss the efficiency property of the estimator. A semiparametrically efficient

estimator is defined in the class of regular asymptotic linear (RAL) estimators that achieves the efficiency

bound ([33], p. 27) . The bound is defined as the suppremum of the most efficient RAL estimators of

the parametric submodels that is a subset of the semiparametric class of models, and the true model

belongs to the parametric submodels. For a parametric model where standard regularity conditions

hold, the MLE produces the most efficient RAL estimator. By construction our estimator is not a RAL

estimator. Therefore, it is generally difficult to compare it with the corresponding efficiency bound.

However, like the Cramer-Rao lower bound, there exists a Bayesian Cramer-Rao lower bound [34]. It is

worth exploring how a Bayesian minimax estimator can be constructed with that lower bound.
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Appendix

A1 A discussion on density estimation referenced in Section 3

Along the lines of Escobar and West [26], we discuss the connection between the nonparametric ker-

nel density estimation and the Dirichlet process mixture of the Gaussian kernels. Had we observed

e1, . . . , en, the density at a new value en+1 based on the normal kernel would be fe(en+1|e1, . . . , en) =

(nh
√

2π)−1
∑n

i=1 exp{−(en+1 − ei)
2/2h2}, for a bandwidth h > 0. This is a mixture of normal kernels

centered around each observed value of the variable. In our nonparametric Bayesian context, conditional

on the hyperparameters, the predictive density at en+1 is

f(en+1|e1, . . . , en) =

∫
1√

2πθ(n+1)e,2

exp{−(en+1 − θ(n+1)e,1)
2

2θ(n+1)e,2

}dπ(θ(n+1)e, αe|e1, . . . , en)

=

∫ [ Ne∑

k=1

ne
k + N−1

e αe

αe + n
× I(ne

k > 0)√
2πφke,2

exp

{
− (en+1 − φke,1)

2

2φke,2

}

+
αe(1−N−1

e

∑Ne

k=1 I(ne
k > 0))

αe + n
t2aσe

(me, ν)

]
dπ(φe, αe|e1, . . . , en), (A1)

where t2aσe
(me, ν) denotes a t distribution with mode me, scale ν =

√
(1 + τe)/aσebσe , and degrees of

freedom 2aσe , and π(θ(n+1)e, αe|e1, . . . , en) denotes the posterior distribution of the parameters. Some
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essential distinctions are to be made. First, unlike fixed h that helps to determine the weight of each

observation to the density at en+1 in the kernel density estimation, αe in (A1) varies and it plays the role

of a smoothing parameter. In particular, αe has a dual role, one in the weights of the mixing kernels, and

two in determining the number of non-empty clusters (where ne
k > 0) also known as effective number

of mixing components. Unlike kernel density estimation, the effective number of mixing components

varies in our predictive density. Usually a large αe assigns more weight on t2aσe
(me, ν), the distribution

derived from the base probability measure, and tends to create more non-empty clusters. Of course the

number of non-empty clusters is also governed by the observed data, resulting in some traded values of

αe where the posterior probabilities become large. We use a prior distribution on αe and numerically

obtain samples from its posterior distribution by sampling αe from its conditional density given all other

parameters and data in every MCMC iteration. Alternatively, in a semi-Bayesian approach, one may

determine αe by solving an estimating equation characterizing a relation between αe and the number

of non-empty clusters in every iteration of the MCMC sample [17]. Second, unlike kernel density, the

centers of the normal distributions in (A1) are random rather than fixed at the observed values of

the variable. Third, the overall density estimate in (A1) is shrunk towards the baseline prior density

t2aσe
(me, ν).

A2 Details of the MCMC steps referenced in Section 4

Step 0. Initialize αe, αu, and αx. Then initialize the values of β1, β2, γ1, T
∗
i , sie, φe, Xi, six, φx, siu and

φ∗u, for j = 1 . . . , m, i = 1, . . . , n and draw (p1u, . . . , pNuu) from Dirichlet(αuN
−1
u +nu

1 , . . . , αuN
−1
u +nu

Nu
).

Then set φku,1 = φ∗ku,1 − µ∗u and φku,2 = φ∗ku,2, where µ∗u =
∑Nu

l=1 pluφ
∗
lu,1.

Step 1. (a) Draw β1|rest ∼ Normal[V1{
∑n

i=1 Zi(T
∗
i − β2Xi − φsiee,1)/φsiee,2 + µβ1Σ

−1
β1
}, V1], where

V1 = (
∑n

i=1 ZiZ
T
i /φsiee,2 + Σ−1

β1
)−1;

(b) Draw β2|rest ∼ Normal[V2{
∑n

i=1 Xi(T
∗
i − βT

1 Zi − φsiee,1)/φsiee,2 + µβ2/σ
2
β2
}, V2], where V2 =

(
∑n

i=1 X2
i /φsiee,2 + 1/σ2

β2
)−1.
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Step 2. (a) For ∆i = 0 we resample T ∗
i from a truncated normal distribution Normal(β1Zi + β2Xi +

φsiee,1, φsiee,2)I{T ∗ > log(Vi)}, where I(·) denotes an indicator function, and following Gelfand et al.

[35] we write the resampled value of T ∗
i as

T ∗
i = β1Zi + β2Xi + φsiee,1 +

√
φsiee,2Φ

−1

{
(1−R)Φ

(
log(Vi)− βT

1 Zi − β2Xi − φsiee,1√
φsiee,2

)
+R

}
,

where R ∼ Uniform(0, 1) and Φ is the standard normal cumulative distribution function;

(b) Resample Xi from the following conditional distribution [Xi|rest] ∼ Normal(mx, Vx), where

mx = Vx

{
(T ∗

i − ZT
i β1 − φsiee,1)

φsiee,2

+
(φsixx,1 + ZT

i γ1)

φsixx,2

+
m∑

j=1

(Wij − φsluu,1)

φsluu,2

}
,

Vx =

(
β2

2

φsiee,2

+
1

φsixx,2

+
m∑

j=1

1

φsluu,2

)−1

;

Step 3. (a) Do this step for each i = 1, . . . , n. Sample sie from a Multinomial(p∗1e, . . . , p
∗
Nee), where

(p∗1e, . . . , p
∗
Nee) ∝ {p1efe(ei|φ1e), . . . , pNeefe(ei|φNee)} and fe(ei|φje) = exp{−0.5(T ∗

i − β1Zi − β2Xi −
φje,1)

2/φje,2}/
√

2πφje,2. Finally update ne
1, . . . , n

e
Ne

;

(b) Draw (p1e, . . . , pNee) from Dirichlet(αeN
−1
e + ne

1, . . . , αeN
−1
e + ne

Ne
);

(c) Do this step for j = 1, . . . , Ne. If ne
j > 0, sample φje from

π(φje|rest) ∝
∏

sie=j

1√
2πφje,2

exp

{
−(T ∗

i − β1Zi − β2Xi − φje,1)
2

2φje,2

}
H0e(φje),

otherwise sample φje from π(φje|rest) ∝ H0e(φje);

(d) Draw τe from the conditional distribution

IG

[
0.5

Ne∑
j=1

I(ne
j > 0) + ge,

{
h−1

e + 0.5
Ne∑
j=1

φ2
je,1

φje,2

I(ne
j > 0)

}−1]
.

Step 4. (a) Do this step for each l = 1, . . . , nm. Sample slu from a Multinomial(p∗1u, . . . , p
∗
Nuu),

where (p∗1u, . . . , p
∗
Nuu) ∝ {p1ufU(Wij − Xi|φ1u), . . . , pNuufU(Wij − Xi|φNuu)} and fU(Wij − Xi|φlu) =

exp{−0.5(Wij −Xi − φlu,1)
2/φlu,2} /

√
2πφlu,2. In the end update nu

1 , . . . , n
u
Nu

.

28



(b) Draw (p1u, . . . , pNuu) from Dirichlet(αuN
−1
u + nu

1 , . . . , αuN
−1
u + nu

Nu
);

(c) Do this step for each k = 1, . . . , Nu. We determine φku as follows. If nu
k > 0, sample φ∗ku =

(φ∗ku,1, φ
∗
ku,2)

T from

π(φ∗ku|rest) ∝
∏

(ij):slu=k

1√
2πφ∗ku,2

exp

[
−{Wij −Xi − (φ∗ku,1 − µ∗u)}2

2φ∗ku,2

]
H0u(φ

∗
ku).

Thus, we first draw φ∗ku,2 from IG((aσu + nu
k/2 + 0.5), [b−1

σu
+ 0.5

∑
(ij):slu=k{Wij −Xi − (φ∗ku,1 − µ∗u)}2 +

(φ∗ku,1 −mu)
2/τu]

−1), and then conditional on φ∗ku,2 draw φ∗ku,1 from

Normal

[(
nu

k(1− pku)
2

φ∗ku,2

+
1

τuφ∗ku,2

)−1(∑
(ij):slu=k{(Wij −Xi +

∑Nu

l=1,l 6=k φ∗lu,1plu)(1− pku)

φ∗ku,2

+
mu

τuφ∗ku,2

)
,

(
nu

k

φ∗ku,2

+
1

τuφ∗ku,2

)−1]
.

If nu
k = 0, sample φ∗ku,2 from IG(aσu , bσu) and sample φ∗ku,1 from Normal(mu, τuφ

∗
ku,2). In either case, let

µ∗u =
∑Nu

l=1 pluφ
∗
lu,1. We then set φku,1 = φ∗ku,1 − µ∗u and φku,2 = φ∗ku,2;

(d) Draw τu from the conditional distribution IG(0.5
∑Nu

j=1 I(nu
j > 0) + gu, [h

−1
u + 0.5

∑Nu

j=1 I(nu
j >

0){(φ∗ju,1)
2/φ∗ju,2}]−1).

Step 5. (a) Do this step for i = 1, . . . , n. Sample six from a Multinomial(p∗1x, . . . , p
∗
Nxx), where

(p∗1x, . . . , p
∗
Nxx) ∝ {p1efx(Xi|Zi, γ1, φ1x), . . . , pNxxfx(Xi|Zi, γ1, φNxx)} and fx(Xi|Zi, γ1, φjx) = exp{−0.5(Xi

− ZT
i γ1 − φjx,1)

2/φjx,2}/
√

2πφjx,2;

(b) Draw (p1x, . . . , pNxx) from Dirichlet(αxN
−1
x + nx

1 , . . . , αxN
−1
x + nx

Nx
);

(c) Do this step for j = 1, . . . , Nx. If nx
j > 0, sample φjx from

π(φjx|rest) ∝
∏

six=j

1√
2πφjx,2

exp

{
−0.5

(Xi − ZT
i γ1 − φjx,1)

2

φjx,2

}
H0x(φjx),

otherwise sample φjx from π(φjx|rest) ∝ H0e(φjx);

(d) Draw τx from the conditional distribution IG[0.5
∑Nx

j=1 I(nx
j > 0) + gx, {h−1

x + 0.5
∑Nx

j=1 I(nx
j >

0)φ2
jx,1/φjx,2}−1].
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Step 6. Draw γ1 from the conditional distribution Normal(Vγ1{
∑n

i=1 Zi(Xi−φsixx,1)/φsixx,2+µγ1Σ
−1
γ1
}, Vγ1),

where Vγ1 = (
∑n

i=1 ZiZ
T
i /φsixx,2 + Σ−1

γ1
)−1.

Step 7. (a) The full conditional distribution of αe is

π(αe|rest) ∝ Γ(αe)

{Γ(αe/Ne)}Ne
(p1e)

αe/Ne−1 × · · · × (pNee)
αe/Ne−1π(αe).

To draw αe from the above conditional distribution, we shall use a Metropolis-Hastings algorithm with

π(αe) as the proposal density. Suppose that at the tth iteration we draw α
(new)
e from π(α). Then

α(t+1)
e =

{
α

(new)
e with probability ρ(α

(new)
e , α

(t)
e ),

α
(t)
e otherwise,

where

ρ(α(new)
e , α(t)

e ) =
(p1e)

α
(new)
e /Ne−1 × · · · × (pNee)

α(new)e/Ne−1Γ(α
(new)
e )/{Γ(α

(new)
e /Ne)}Ne

(p1e)α
(t)
e /Ne−1 × · · · × (pNee)α

(t)
e /Ne−1Γ(α

(t)
e )/{Γ(α

(t)
e /Ne)}Ne

;

(b) Draw αu from π(αu|rest) ∝ Γ(αu){Γ(αu/Nu)}−Nu(p1u)
αu/Nu−1 × · · · × (pNuu)

αu/Nu−1π(αu);

(c) Draw αx from π(αx|rest) ∝ Γ(αx){Γ(αx/Nx)}−Nx(p1x)
αx/Nx−1 × · · · × (pNxx)

αx/Nx−1π(αx).

Step 8. (a) Draw bσe from IG[ηe + aσe

∑Ne

j=1 I(ne
j > 0), {ζ−1

e +
∑Ne

j=1 I(ne
j > 0)/φje,2}−1];

(b) Draw bσu from IG[ηu + aσu

∑Nu

j=1 I(nu
j > 0), {ζ−1

u +
∑Nu

j=1 I(nu
j > 0)/φju,2}−1];

(c) Draw bσx from IG[ηx + aσx

∑Nx

j=1 I(nx
j > 0), {ζ−1

x +
∑Nx

j=1 I(nx
j > 0)/φjx,2}−1].

A3 Details of the MCMC steps referenced in Section 7

Here we describe the MCMC steps used for the PCPE method.

Step 1. Draw σ2
u from IG[aσu + 0.5nm, {0.5 ∑n

i=1

∑m
j=1(Wij −Xi)

2 + 1/bσu}−1].

Step 2. Draw σ2
x from IG[aσx + 0.5n, {0.5 ∑n

i=1

∑m
j=1(Xi − γ0 − γT

1 Zi)
2 + 1/bσx}−1].

Step 3. Draw γ0 from Normal[(n/σ2
x + 1/σ2

γ0
)−1{µγ0/σ

2
γ0

+
∑n

i=1(Xi − γT
1 Zi)/σ

2
x}, (n/σ2

x + 1/σ2
γ0

)−1].

Step 4. Draw γ1 from Normal[(
∑n

i=1 ZiZ
T
i /σ2

x+Ip/σ
2
γ1

)−1{µγ1/σ
2
γ1

+
∑n

i=1(Xi−γ0)Zi/σ
2
x}, (

∑n
i=1 ZiZ

T
i /σ2

x

+ Ip/σ
2
γ1

)−1].
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Step 5. To draw λ1, . . . λq we shall use the Metropolis-Hasting’s algorithm. Repeat the following steps

for each s = 1, . . . , q:

a) Sample a proposal value λ
(p)
s from Gamma(aλ, bλ);

b) Sample r1 from Uniform(0, 1);

c) If r1 < ρ1 we accept λs = λ
(p)
s otherwise λs remains unchanged, where

ρ1 =
n∏

i=1

{∑q
j=1,j 6=s λjI(tj−1 ≤ Vi < tj) + λsI(ts−1 ≤ Vi < ts)∑q

j=1 λjI(tj−1 ≤ Vi < tj)

}∆i

× exp

{
−(λ(p)

s − λs)I(ts−1 ≤ Vi) exp(βT
1 Zi + β2Xi)

}
.

Step 6. We update β1 by the Metropolis-Hastings algorithm:

a) Draw a proposal β
(p)
1 from Normal(µβ1 , Σβ1);

b) Draw r2 from Uniform(0, 1);

c) If r2 < ρ2 accept β1 = β
(p)
1 , otherwise β1 remains unchanged, where

ρ2 =
n∏

i=1

exp{∆i(Z
T
i (β

(p)
1 − β1)} exp

[
−

q∑
s=1

λsI(ts−1 ≤ Vi) exp(β2Xi){exp(ZT
i β

(p)
1 )− exp(ZT

i β1)}
]
.

Step 7. We update β2 by the Metropolis-Hastings algorithm:

a) Draw a proposal β
(p)
2 from Normal(µβ2 , σβ2);

b) Draw r3 from Uniform(0, 1);

c) If r3 < ρ3 accept β2 = β
(p)
2 , otherwise β2 remains unchanged, where

ρ3 =
n∏

i=1

exp{∆i(Xi(β
(p)
2 − β2)} exp

[
−

q∑
s=1

λsI(ts−1 ≤ Vi) exp(βT
1 Zi){exp(Xiβ

(p)
2 )− exp(Xiβ2)}

]
.

Step 8. For i = 1, . . . , n, Xi is drawn from the following conditional distribution

π(Xi|rest) ∝ exp

{
∆iβ2Xi −

q∑
s=1

λsI(ts−1 ≤ Vi) exp(βT
1 Zi+β2Xi)− (Xi − γ0 −ZT

i γ1)
2

2σ2
x

−
m∑

j=1

(Wij −Xi)
2

2σ2
u

}
.

A4 Further analyses of the real data using some alternative approaches

In the Buckley-James method e is treated nonparametrically. In the data analysis section we have

adopted the naive and regression calibration approaches in the Buckley-James estimates setting. We
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now adopt the SIMEX approach in the same setting. Furthermore, we adopt a flexible parametric

model for e, and use the 3-parameter Generalized Gamma distribution that includes Gamma, Weibull,

and lognormal models as special cases. Under the generalized gamma model we conducted the naive,

regression calibration, and the two SIMEX analyses, SIMEX1 and SIMEX2. The details of these two

are described in the third last paragraph in the simulation section. In SIMEX, λ values were taken

between 0 and 2 with 0.2 increment. Furthermore, we have used a quadratic extrapolation function.

The results are given in Table 6. The top panel (SIMEX1 and SIMEX2) of Table 6 is a continuation

of the top panel of Table 5 as we have used the same setting of semiparametric AFT model with the

distribution of e being left unspecified. The results indicate that the estimates under the generalized

gamma model are somewhat close to that in the semiparametric AFT model. All the methods show

statistically significant association between the CD4 count and the time-to-event. Furthermore, all

four approaches under the parametric AFT model indicate statistically significant association (at the

5% level) between the time-to-AIDS/death and the treatments. Note that the Wald-type confidence

interval for the semiparametric AFT model is always slightly larger than that for the parametric AFT

model.
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Table 1: Results of the simulation study where log(T ) = Z + 2X + 1 + e, e ∼ Exponential(1), X ∼
0.2Z + (1/3)Normal(0, 0.72) + (2/3)Normal(2, 0.32), C = 0.5X2 + Unif(0, 2, 000) for 25% censoring,
C = 0.5X2 + Unif(0, 400) for 50% censoring, and U ∼ Gamma(1, 1)− 1. Here Ne = Nu = Nx = 50.

Method Parameter Bias SD MSE Bias SD MSE

n = 200 & 25% censoring n = 200 & 50% censoring
Naive β1 0.152 0.122 0.038 0.127 0.138 0.035

β2 −0.529 0.102 0.291 0.590 0.122 0.183
RC β1 0.012 0.142 0.020 −0.024 0.162 0.026

β2 0.153 0.209 0.067 0.327 0.245 0.167
SP β1 0.001 0.098 0.009 0.011 0.108 0.012

β2 0.007 0.091 0.008 0.025 0.099 0.011
SPPE β1 −0.001 0.098 0.009 0.011 0.109 0.012

β2 0.009 0.093 0.009 0.027 0.100 0.011
SPPU β1 0.003 0.132 0.017 0.011 0.144 0.021

β2 0.035 0.122 0.016 0.074 0.137 0.024
SPPX β1 0.012 0.104 0.011 0.004 0.117 0.013

β2 0.076 0.117 0.019 0.159 0.128 0.042

n = 300 & 25% censoring n = 300 & 50% censoring
Naive β1 0.156 0.095 0.034 0.134 0.112 0.034

β2 −0.529 0.083 0.287 0.409 0.095 0.078
RC β1 0.018 0.106 0.011 −0.019 0.121 0.021

β2 0.140 0.161 0.045 0.316 0.184 0.142
SP β1 0.008 0.076 0.006 0.019 0.089 0.012

β2 0.009 0.068 0.005 0.027 0.075 0.009
SPPE β1 0.004 0.081 0.007 0.019 0.091 0.012

β2 0.012 0.072 0.005 0.028 0.077 0.010
SPPU β1 0.003 0.100 0.010 0.014 0.110 0.016

β2 0.034 0.097 0.010 0.065 0.106 0.022
SPPX β1 0.017 0.084 0.007 0.011 0.095 0.013

β2 0.070 0.088 0.013 0.149 0.095 0.032
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Table 2: Results of the simulation study where log(T ) = Z + 2X + 1 + e, and e ∼ t3, X ∼
{Gamma(6, 0.5) − 3}/1.22, C = 0.5Z2 + 0.5X2 + Unif(0, 40) for 25% censoring, C = 0.5Z2 + 0.5X2 +
Unif(0, 5) for 50% censoring, and U ∼ Normal(0, 0.712). Here Ne = Nu = Nx = 50.

Method Parameter Bias SD MSE Bias SD MSE

n = 200 & 25% censoring n = 200 & 50% censoring
Naive β1 −0.008 0.134 0.018 −0.007 0.159 0.025

β2 −0.466 0.142 0.238 −0.488 0.189 0.275
RC β1 −0.008 0.140 0.019 −0.007 0.164 0.027

β2 −0.069 0.197 0.044 −0.097 0.253 0.074
SP β1 0.002 0.133 0.017 0.009 0.152 0.023

β2 0.023 0.210 0.045 0.034 0.271 0.074
SPPE β1 0.009 0.143 0.021 0.033 0.172 0.031

β2 0.085 0.232 0.061 0.129 0.309 0.113
SPPU β1 0.003 0.134 0.018 0.008 0.153 0.023

β2 0.039 0.208 0.045 0.056 0.281 0.082
SPPX β1 −0.001 0.132 0.017 0.005 0.148 0.022

β2 −0.036 0.192 0.038 −0.052 0.238 0.059

n = 300 & 25% censoring n = 300 & 50% censoring
Naive β1 −0.009 0.111 0.012 −0.016 0.133 0.018

β2 −0.467 0.111 0.231 −0.496 0.156 0.271
RC β1 −0.010 0.115 0.013 −0.017 0.137 0.019

β2 −0.076 0.150 0.028 −0.116 0.209 0.057
SP β1 −0.002 0.106 0.011 −0.010 0.126 0.016

β2 −0.013 0.139 0.019 −0.022 0.195 0.038
SPPE β1 0.006 0.115 0.013 0.022 0.141 0.023

β2 0.071 0.173 0.035 0.118 0.251 0.076
SPPU β1 −0.001 0.106 0.011 −0.010 0.127 0.016

β2 0.006 0.143 0.020 −0.000 0.201 0.040
SPPX β1 −0.007 0.104 0.011 −0.009 0.125 0.015

β2 −0.072 0.134 0.023 −0.097 0.191 0.045
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Table 3: Results of the simulation study where log(T ) = Z + 2X + 1 + e, e ∼ Exponential(1), X ∼
0.2Z + (1/3)Normal(0, 0.72) + (2/3)Normal(2, 0.32), C = 0.5X2 + Unif(0, 2, 000) for 25% censoring,
C = 0.5X2 + Unif(0, 400) for 50% censoring, and U ∼ Gamma(1, 1)− 1. Here Ne = Nu = Nx = 100.

Method Parameter Bias SD MSE Bias SD MSE

n = 200 & 25% censoring n = 200 & 50% censoring
Naive β1 0.143 0.122 0.035 0.119 0.135 0.032

β2 −0.521 0.109 0.282 −0.400 0.118 0.174
RC β1 0.005 0.145 0.021 −0.036 0.162 0.027

β2 0.152 0.193 0.060 0.329 0.223 0.158
SP β1 0.013 0.097 0.009 0.017 0.104 0.011

β2 −0.016 0.146 0.022 0.012 0.124 0.015
SPPE β1 −0.001 0.108 0.012 0.009 0.113 0.013

β2 0.007 0.132 0.017 0.029 0.112 0.013
SPPU β1 0.016 0.127 0.016 0.019 0.136 0.019

β2 −0.012 0.108 0.012 0.048 0.120 0.017
SPPX β1 0.011 0.110 0.012 −0.002 0.123 0.015

β2 0.077 0.127 0.022 0.177 0.140 0.051
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Table 4: Results of the simulation study where log(T ) = Z + 2X + 1 + e, e ∼ Normal(0, 1), X ∼
0.2Z + (1/3)Normal(0, 0.72) + (2/3)Normal(2, 0.32), C = 0.5X2 + Unif(0, 500) for 25% censoring. Here
Ne = Nu = Nx = 50.

Method Parameter Bias SD MSE Bias SD MSE

σ2
u = 0.5 σ2

u = 1
U ∼ Normal(0, σ2

u)
Naive β1 0.095 0.118 0.023 0.159 0.135 0.043

β2 −0.291 0.098 0.094 −0.515 0.103 0.277
RC β1 0.014 0.124 0.016 0.019 0.155 0.024

β2 0.109 0.144 0.033 0.184 0.221 0.083
SIMEX1 β1 0.045 0.144 0.022 0.122 0.165 0.043

β2 −0.095 0.141 0.029 −0.322 0.153 0.127
SIMEX2 β1 0.011 0.122 0.015 0.046 0.144 0.023

β2 −0.021 0.121 0.015 −0.091 0.148 0.030
SP β1 0.016 0.132 0.017 0.030 0.155 0.025

β2 0.020 0.123 0.015 0.011 0.153 0.023
U ∼ σu{Gamma(1, 1)− 1}

Naive β1 0.085 0.119 0.022 0.141 0.137 0.039
β2 −0.295 0.100 0.097 −0.517 0.113 0.280

RC β1 0.004 0.125 0.015 0.001 0.155 0.024
β2 0.105 0.136 0.029 0.180 0.209 0.076

SIMEX1 β1 0.007 0.143 0.020 0.055 0.169 0.031
β2 −0.092 0.169 0.037 −0.300 0.221 0.139

SIMEX2 β1 −0.003 0.122 0.015 0.013 0.144 0.021
β2 −0.027 0.114 0.014 −0.094 0.144 0.029

SP β1 0.004 0.117 0.013 0.009 0.132 0.017
β2 0.022 0.105 0.011 0.015 0.157 0.024

U ∼ σu{0.5Normal(0.9, 0.52) + 0.5Normal(−0.9, 0.52)}
Naive β1 0.098 0.119 0.023 0.165 0.137 0.046

β2 −0.305 0.093 0.102 −0.538 0.095 0.299
RC β1 0.013 0.123 0.015 0.018 0.152 0.023

β2 0.116 0.146 0.035 0.195 0.233 0.093
SIMEX1 β1 0.052 0.142 0.022 0.132 0.165 0.044

β2 −0.104 0.127 0.027 −0.349 0.129 0.139
SIMEX2 β1 0.013 0.123 0.015 0.058 0.143 0.022

β2 −0.022 0.119 0.015 −0.100 0.144 0.031
SP β1 0.008 0.125 0.015 0.015 0.138 0.019

β2 0.032 0.111 0.013 0.037 0.126 0.017
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Table 5: Results for the ACTG AIDS clinical trial data. For the naive Buckley-James method the
95% interval refers to the Wald type confidence interval whereas for the RC method the 95% interval
refers to the percentile interval based on 1,000 bootstrap samples. For the Bayesian methods the 95%
intervals refer to the equal tail credible intervals. For the Bayesian methods we present the posterior
mean of the parameters as the estimates. Here Z, Z+D, Z+Z, and D stand for zidovudine, zidovudine
plus didanosine, zidovudine plus zalcitabine, and didanosine, respectively.

Method Z+D (Ref: Z) Z+Z (Ref: Z) D (Ref: Z) log(CD4)

Accelerated failure time model
NV 0.333 0.411 0.263 1.001

(−0.042, 0.708) (0.013, 0.808) (−0.101, 0.625) (0.566, 1.433)
RC 0.332 0.407 0.265 1.217

(0.044, 0.645) (0.080, 0.755) (−0.049, 0.554) (0.563, 2.094)
SP 0.406 0.512 0.350 1.360

(0.054, 0.771) (0.164, 0.889) (0.019, 0.702) (0.864, 1.897)
SPPE 0.414 0.514 0.355 1.355

(0.066, 0.777) (0.161, 0.897) (0.023, 0.701) (0.866, 1.898)
SPPU 0.410 0.507 0.352 1.417

(0.059, 0.776) (0.139, 0.891) (0.016, 0.693) (0.902, 1.985)
SPPX 0.408 0.513 0.356 1.394

(0.071, 0.780) (0.156, 0.888) (0.020, 0.700) (0.879, 1.952)

Piecewise exponential model
NVPE −0.801 −1.010 −0.778 −1.927

(−1.365, −0.262) (−1.617, −0.443) (−1.326, −0.237) (−2.575, −1.284)
RCPE −0.801 −1.005 −0.783 −2.32

(−1.372, −0.267) (−1.607, −0.432) (−1.321, −0.246) (−3.093, −1.542)
PCPE −0.809 −1.014 −0.795 −2.528

(−1.388, −0.264) (−1.629, −0.430) (−1.334,−0.252) (−3.413, −1.651)
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Table 6: Results for the ACTG AIDS clinical trial data. Here Z, Z+D, Z+Z, and D stand for zidovu-
dine, zidovudine plus didanosine, zidovudine plus zalcitabine, and didanosine, respectively, and AFT
stands for accelerated failure time. 95% Wald-type confidence intervals are given in parenthesis right
beneath the estimates. The bootstrap method was used to compute the standard error of the regression
calibration and the SIMEX methods.

Method Z+D (Ref: Z) Z+Z (Ref: Z) D (Ref: Z) log(CD4)

Semiparametric AFT model, e is nonparametric
SIMEX1 0.322 0.417 0.252 1.092

(−0.044, 0.708) (−0.004, 0.838) (−0.122, 0.626) (0.384, 1.799)
SIMEX2 0.306 0.396 0.248 1.133

(−0.058, 0.671) (−0.025, 0.817) (−0.141, 0.636) (0.484, 1.782)

Parametric AFT model, e is Generalized Gamma
NV 0.339 0.443 0.338 0.972

(0.052, 0.625) (0.135, 0.750) (0.064, 0.612) (0.594, 1.350)
RC 0.339 0.440 0.341 1.181

(0.053, 0.625) (0.132, 0.748) (0.063, 0.619) (0.740, 1.622)
SIMEX1 0.349 0.435 0.334 1.094

(0.026, 0.672) (0.139, 0.731) (0.024, 0.643) (0.578, 1.609)
SIMEX2 0.333 0.435 0.332 1.121

(0.015, 0.656) (0.141, 0.729) (0.026, 0.637) (0.623, 1.618)
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Figure 1: Survival probabilities and 95% pointwise credible intervals for baseline CD4 counts 232
(darker) and 539 (lighter).
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Figure 2: Boxplot of logarithm of the complete data likelihood given the parameter values in the MCMC
iterations for different models.
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