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S.1 Results of Section 3

S.1.1 Proof of Theorem 1
S.1.1.1 Proof of part i)

Proof. Define f(u) = log[{1 — (14 ru)~/"} /{1 — (1 + 7ug)~/"}], » > 0,u > 0. Then f(ug) = 0.

Define
COf(u) (14 ru)m @M
Arw) = ou 1 — (14 ru)-t/r
and
2 1 1 —(2+1/r) 1 —(24+2/r)
Ay(u) = _0‘58 f(u) 05 (T+7)( +ru)_ (1+7ru) -
ou? 1= (14 ru)-tr {1—(1+7ru)-t/r}2

Consider the Taylor series expansion of f(u) about u = o,
fu) = (u—ug) Ay (ug) — (u — ug)® Ay (u"),

for some |u* — u| < |ug — u|. Clearly, As(u) is decreasing in u for any r > 0. Therefore, for

u>u* > wup and any r > 0, As(u) < As(u*) < Aa(ug), and then

fu) > (u—up)Ai(ug) — (u — ug)*As(up)

= (u—up)Ai(uo) — (u—up)*As(uo) + K {log (%) +log (E) }

Uop
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> (u—ug) A (ug) — (u—up)?As(ug) + K {log (E) + (1 - @>} : (S.1)

u u
In fact the result (S.1) holds for either choices of x mentioned in Theorem 1.

To prove the result when u < ug, let us define g(u) = f(u)— (u—1wug) A (uo) + (u—1up)* As(ug) —
k{log(ug/u) + 1 — up/u}. Then

U — Ug

g(w) = Aj(u) — Ai(ug) + 2(u — ug) As(up) + "

_ W—UQ{Q&WQ+Z%WQ+§},

where the last equality is obtained by applying the Taylor series expansion on A;(u) about
u =g, A1(u) = Ay (up) — 2(u — up)Az(uy), for some uy € [u, up).
Next we consider the case of 0 < r <1 with x = 1/r. Define

1 1 (1 +rup) Y21+ {1 — (1 + ruy) "V

B = — —924 L
T2 2(uy) ru? {1— (14 rup)~t/r}?

1= (1 +7u) Y —ra (14 ruy) Y21+ {1 — (1 +ru) "V}

ru{l — (14 rus)~1/r}2 ’

and By = Byru*{1 — (1 + ru;)"%/"}2. Then

B, = {1-(1+ TuT)—l/T} [1 1+ TUT)—l/r _ r2u2(1 i T’UT)_I/T_Q} _ ru2(1 i TuT)_l/T_Q

1— (1 +rug)~t/r ’ o
{ 1+ TUT)l];r+2 {0+ rup)™2 — (14 rup)? — r2u?} — ru?(1 + rug) "2

1
= Orrapie [{1 — (U rug) {0 ) (L) - ) - .
T

Using the Bernoulli inequality we have for 0 < r <1,
(L rup) /2 = (Lt ru) (L) > (L u) (1 rug)
= (L+7rup)® + up(1 + rug)?.

Now, using this inequality in the numerator of B, we obtain

1
(L + rug) /7

1 [ 1
- - 1—- — 1 2 2,20 2
(1 +TUT)1/T+2 { (1 +ruT)1/T} {UT( -I—ruT) rTu } U
1 [ 1 2 2,2 2
W_(l—m) {U,T(l‘f’TUT) — T u }—TU

2

By {1— (1 +ru)™"} {1+ ru)® + us (T4 ruy)® = (L4 ruy)® — e’} — ro?

v




1 2, 2 2
- (1—|—7’uT)1/7"+2{(1+uT) {ui(1 4 ruy)® = e} —ru
Bs
T+ ra) Vo )

where By = u?(1 + ruz)® — r*uuy — ru*(1 + uy). This last inequality pertaining to By holds
due to the application of the Bernoulli inequality for 0 < r < 1 and u(1 + ru;)? — r?u® > 0 for
u < . Since 0 <7 < 1, up(1+7rup)? —r2u? > up(1+rug)® —rud = up +r°uf + 2r(uf —u?) > 0.

Now, we have

By = wi(1+rup)® —r*uluy —ru(1 + uy)

= uf + 7’2u}1 + 27’u‘;’ — r2u2uT —ru? — ru2uT

= {1—7"(:;)2}%—7“uT+ruT{2—(1+r)(u%)2}.

Since u < ut, u/uy < 1 and consequently {1 — r(u/us)*} > 0 and 2 — (1 + r)(u/us)* > 0 for
r € (0,1]. Hence, B3 > 0 and Bj, By > 0 as well. Since As(ug) > 0 we have By + 2A5(ug) > 0

and

g (u) = (u—ug) {% — 2A5(ut) + 2A2(u0)} <0

for 0 < r <1 and u < ug. This proves that g(u) is decreasing for u < ug. Note that g(ug) = 0, so
g(u) > 0 for u < ug, and together with (S.1) we have f(u) > (u—ug) A1 (ug) — (u —ug)? As(ug) +
(1/r){log(uo/u) + 1 — ug/u} for 0 < r < 1.

Next consider the case of r > 1 with k = 1. Here g'(u) = (u—ug) {—2As(us) + 245 (ug) + 1/u?}.

Our goal is to show ¢'(u) < 0. To prove this it is sufficient to show

—1/r—2 _ —1/r
B, — i 2y () = 1 (1 +ry) [1+7r{l—(1+47rus) "}

uT % = (L4 ru) /P2 >0 52

for u < up because g'(u) = (u — u){Bs + 24s(uo)} + (u — ue)(1/u?® — 1/u?), (u — ug) < 0,
(1/u* = 1/u?) > 0 for u < ug and u; € [u,ug), and Az(up) > 0. Now, consider the following
transformation of variables, t = (1 + ru;)'/", so uy = (" — 1)/r. Then, showing inequality (S.2)

is equivalent to show the following inequality,

r? (1+r)t—r
(tr —1)2 - 2r(t—1)2

>0, Vr>1,t>1



= Tt -1 —{(1+r)t—r}t" —1)*>0

= -1 >t -1 t+rt—7)

< 2log(r) + 2log(t — 1) + 2rlog(t) — 2log(t" — 1) > log(t + rt — ). (S.3)
Obviously lim; i+ log(t + rt —r) = 0, and
lim {2log(t — 1) — 2log(t" — 1)} = 2 lim 1 T2L) o (2
ok 17108 ©8 e AN\ o) TR )
Therefore, lim, ,;+{2log(r) 4+ 2log(t — 1) + 2rlog(t) — 2log(t" — 1)} = 0. We thus have
2log(r) + 2log(t — 1) + 2rlog(t) — 2log(t" — 1)
B /t 0{2log(r) + 2log(s — 1) + 2rlog(s) — 2log(s" — 1)}
A Os ’
and
t
1 _
log(t+rt —7r) = / O{log(s + s T>}
1 83
Then, to prove (S.3), it suffices to show
0{2log(r) + 2log(t — 1) + 2rlog(t) — 2log(t" — 1)} - Olog(t+rt — 7“)7 V1> 1
ot ot
— 2 _ 2r - r+1
t—1 t{tr—1) t+rt—r
= L= > (r+1) ! — !
t—1 -1V t+rt—r (t—1)(r+1)
<~ L — 2r + ! >0
t—1 ttr—1) (t+rt—r)(t—1)
— t+rt—r+1 - 2r
(t—Dt+rt—r) titr—1)
(=Dt 2(t+rt—r)
< >
t—1r  t4+rt—r+1
— tr—1)t o (t—1)(r+1)
(t—1)r t+rt—r+1
Y —t—tr+r  (t—-1(r+1)
<~ >
(t—1)r t+rt—r+1
PN t"+1—t—tr+r> 1
(t—12r(r+1)  t+rt—r+1
=1yt —-1) - 1 1
= ( JA ) —r+ 1) > . (S.4)
(t—1)r(r+1) t+rt—r+1

4



We now provide two useful statements, the first is

-1/t —-1)=(r+1)E > (r+1) <%)T (S.5)

where the equality is obtained by the mean value theorem with & € (1,¢) and the inequality is

I 1 [ ot
E=——1[ s'ds> —/sds _ (2 :
t—1J, t—1J, 2

The last inequality is obtained by applying Jensen’s inequality and noting that x" is a convex

obtained by

function for » > 1 and any generic x > 0. The second is

{@4—U/ZV——{@4—U/2F)::(t+—1>&10g(fj;1>’ (S.6)

r—20 2 2
where the equality is obtained by the mean value theorem for a & € (0,7). Applying inequalities

(S.5) and (S.6) to the left hand side of inequality (S.4), we have

E—D/E-D - (r+1) _ {t+1/2)7 -1 _ (%)% log (4)
(t—Dr(r+1) = (t-1r t—1 ‘

Then, to prove (S.4), it is sufficient to show

(454) 105 (45) S U
t—1 t+rt—r+1 t—1 (%)&l()g(%)

(S.7)

Since log(x) > 1 — 1/x for any generic > 0, we get log{(t +1)/2} > (t — 1)/(t + 1) and using

this result to the right hand side of (S.7) we get

{T+ /2@ fog{<t+1>/2} : (1_2“)& g (%> - (E) =T (§>

where the second last inequality follows as t > 1. The last inequality follows as r > 1. Hence

(S.7) follows. Then the inequality (S.2) holds and 1/u® — 2A45(u;) + 2A45(ug) > 0 for r > 1.
Consequently ¢ (u) < 0 for u < ug, and then g(u) > g(ug) = 0 for u < uy and the desired result

is obtained. O
S.1.1.2 Proof of part ii)

Proof. To prove the part ii) of Theorem 1, we first define f(u) = log[{l — exp(—u)}/{1l —

exp(—ug)}|. Observe that f(ug) = 0. Let us consider the Taylor series expansion of f(u) about

5



fu) = (u—ug)As(uo) — (u — ug)* Ag(u*),

for some u* € (ug, u), where
0, 9

and

19 f(u) exp(—u) exp(—2u)  exp(—u)

A =0 T i —ep(w} T 2l —ep(—0P | 21— exp(—u)P

Note that As(u) is a decreasing function. So, for u > wug, As(ug) = max,>,,A2(u). Hence, for

uZUOJ

fu) > (u—ug)A;(ug) — (u — ug)?As(ug)

= (u —up) Ay (uo) — (u —ug)*As(ug) + log <%> +log (i)

Ug

> (u—up) Ay (ug) — (u — ug)*As(uo) + log (%) + (1 - %) : (S.8)

To prove the result when u < ug, let us define g(u) = f(u) — (u — ug) Ay (ug) + (u — ug)*Az(ug) —
log(uo/u) =1+ uo/u

U — Ug

g () = Ai(u) — Ai(uo) + 2(u — up) Az (uo) +

= () {~2Aa(ur) + 240 + 5}

u2

where the last equality is obtained by applying the Taylor series expansion on A;(u) about
u = ug, Ai(u) = A1(uo) — 2(u — up)Az(uy), for some ut € (u,up). As As(ug) > 0, then for u < us

1 1 1 1

- 2A5(uy) + 2A2(up) > u—$ —2A5(uy) = u? {1 — exp(—u;) )2 exp(uy)

= h(uy).
Let us define
k(us) = {1 — exp(—uy) }* exp(us) — v = exp(uy) + exp(—uy) — uf — 2,

and investigate its properties. Note that

a o g @ 2
/{Z(UT) = 1+UT+?+§+Z—5+"' —+ 1_UT+?_§+Z_E+“' —ui —



(T VA
= Q{Z—Fa"—g} > 0.
This result proves ¢'(u) < 0 (g is a decreasing function) for any u < wg. Thus, g(u) >
Ming<,, ¢(u) = lim,_,, g(u) = 0. Hence, g(u) = f(u) — (u — ug)As(ug) + (u — ug)?Ag(ug) —
log(ug/u) — 1 + ug/u > 0 for u < ug and combined with (S.8) we now have part ii) of the

theorem. O

S.1.2 Proof of inequality (11)

This is the derivation of the minorization function for the r > 0 case with 6 > 0. Applying part

(i) of Theorem 1 to the multiplier of A; ; and result (i) of Lemma 1 to the multiplier of (1 —A, ;),

we have
GE) > (&) + > wil& ar) Z (AM{Al (wijk(&0)) + 2A2(w; 5,k (&) i k(o) }
k =1

0 7,7

Hy,(C; 5
— A j Ao (i (€0))ui ;1 (€o) exp {2(04 — ) "W + 2log {#H
) (CZ,

)
u; k(&) Hy(Cig)
0= B e [l e Wi g0

Hyo (Ci5)
_AL — @)W, + log § 2o bdd
PR [(ao o) Wisn+ Og{ Hy(Cij) H

— Ak [log{Hy(Cij)} + oW ]

— i i AL (wi 1 (€o) Vi ik (&) — i jAa(uijn(€o))uij1(€o) + (1 — Ay ;) Uik (§o)

1+ rui k(&)

+A ik + Ak 10g{ui,j,k(€o)}>

G(&g) + ) wi(€p ar) > (Az‘,j{Al (wij ke (&0)) + 2A2(wi 5k (&0)) ik (o) }

j=1

v

B Aa(usgal€o)i u(60) (3 ) [expa(ar - o) W) + {M}]

14 ru; k(&



—A@jli [log{H¢(CZ,J)} + QTWZ‘J"]J

— ;5 Ar (i (o)) i g 1 (E0) — D g Ax (i j 1 (€0))u j 1 (€o) + (1 — Aiy) iik(80)

L+ 7ru;51(&o)
+A ik + Ak log{uz‘,j,k(ﬁo)})

= {1i(€l&o)-

The last inequality is obtained by using result (ii) and (iii) of Lemma 1. Thus ¢;; can be further
written as £;;(€1€y) = b 1i(@l€o) + G 2,i(P€o) + G 3.i(&o)-

S.1.3 Detailed derivation of Section 3.3

This is the details of the non-dependence case (# = 0). Note that here

_ 3y o8 (GO}
- ;E’( _“”ZI {{1— 50)}A{G<§0)}1A]

Case of r > 0

For r > 0, using the actual expressions of G;(§) and G;(&,), we have

e - %”g (3o [{ = ] + 0 somen {17 ).

Using the same inequalities and techniques in Section S.1.2, we first obtain the minorization

function ¢4(§|€,), such that £(&) > (;(£]€,) = lia(el€y) + Cr2([€o) + £r.3(€p), where

frafoln) = 3| A At + 242060 (60) flo)a — an) X,

(ui(&))
- <%> Az (ui(&o))uf () exp{d(a — o) " X}
>

B E; Ai) 1 f iﬂ(io()go) exp{2(c — o) X}
(3

) exp{2(cp — )" X;} — AmaTX,;} :
(a(lE,) = Z [ uten) + 20

anteaos{ 75 | - (5) At { 75 }

8



(5 e (e}

() {Eie ) - swetnicn]

fales) = t(es)+ D (Atalu€n)uen) + (1 A

fAR +1og{ui<£o>}J)-

Then, a and 1) are estimated by the generic Newton-Raphson algorithm given in (12), where

the needed quantities are

1 - m—1 1_AZ
stalr e = 3 {auen ) - Em R

i=1

}w(ém”)xi,

n

SN Y) = 3 Al (e )

i=1

(£(m=1)

n

S(gprhigmy = Z{Aim(ui(s(m—”))

=1
(=4 } L p(m—1) |:810g{H¢(OZ-)}:|
1+rui(€(mfl)) uz(€ ) ad) ¢:¢(m71)7
(m=1)g(m=1)y _ - . (gm=1\\ o (e(m=1)y _ (1 _ A. Ui(ﬁ(m_l)) }
Sl )¢ ) ;{Amm(g D(E )~ (1) S
{8210g{Hw(Ci)}]
5¢5¢T Pp=ap(m=1)

ui(€7Y)
1 + ru; (€(m—1))

- | sAalule e ) 201 - &) + 20}

y qalog{gz(a)}] ¢:w(m_n>®?

For the » — 0 case (actually the limiting case r — 0) the minorization function is the total

Caseof r = 0

of the following terms

frafolgn) = 3| A A€ + 24uul€0) (6 | x ul€oor - )X,
A;

_ (7) Au(ui(Ey) ) (€) expld(ex — ) X}

9



_ (1 _QA ) wi(&o) exp{2(a — )X}

' exp{?(ao — a)TXl} — AlaTXZ] s

Hy(C;) }

Cro(th|&y) = ' [Az As(ui(&y)) + 2A4(Ui(£0))ui<€0)} X ui(&) 10g{H¢ )

)

\

Jaeieonien (G5 - (5% weo {3}
) {};ﬁ(gf - sestncn)

&) = 160+ D (BrAsu €€ + (1~ &) + A1 + og{uteo)} ).

and the terms needed in the Newton-Raphson algorithm (12) are

n

S(alm gy = Z{Amgxu@-(&(m”>>—<1—Ai>}%<£<m”>xi,

i=1
Sa(a(mfl)ys(m—l)) — _i[SAiAZL(Ui(E(mD))“?(E(m1))+2(1_Ai)ui<€(m1))+2Ai:|Xl®2,
i=1
s Ve ) = > LA ) - (1 - o) fuyer ) [ZEE
i=1 Pp=gp(m=1)
m—1)| g(m— Y (- m-1)y [ 07 log{Hy(Ci)}
(m=1)|g(m=1)y _ 1) (m—1) g41y
S ) = 3 (A A ute [ L LW 1)

n

- Z{SAfAzx(ui(ém—”))u?(s(m—”) +2(1 = A)uw(€" ) + QAZ}

y ({alog{gzm)}] M(ml)) .

Since Hy(C;) = >, Mi(C;) exp(), 0Hy(Cy) /0 = Mi(C;) exp(iy), let us write 0H,/0¢ =
D, exp(v), where D; = Diag(M,(C}),..., Mg (C;)) and exp(v) = (exp(¢1),- .-, exp(Yr))T.

Then we have

{82 10g{H¢(Ci)}] - {DiDiag(exp(w(m‘”)) _ Diexp(@™ V) {exp(yp™ )} "D
p=p(m=1)

OpOnpT Hym1y HE

and

([810g{Hw(Ci)}] )®2_ D exp(y"” 1)){eXp( "D
p=p(m=)

10



S.2 Results of Section 4
S.2.1 Background

Notations: To prove the main theorems more clearly, we first assume the subject-specific
random effect b is observed and investigate the asymptotic properties of the penalized complete
ML estimator. The rate of convergence (Theorem 2) and semiparametric efficiency (Theorem
3) of the penalized observed ML estimator (4) can be proved with the similar arguments and
presented at Subsection S.2.6.

Define O, = (Cy1, ..., Com., Dsr, ... ,A*Vm*XL, ce ,le*, Z.)" as the observed data from
a random cluster *, where m, is the cluster size. We also let P, be the distribution of the
complete data g = (O,,b,)" from a random cluster * under the parameter vector ¢, and p, be
the corresponding density with the dominating measure p. For simplicity, we define Py = P,

and pg = py,. Specifically, let L.(¢;g) and £.(¢; g) be the likelihood and log-likelihood for one

single complete observation, respectively. In other words,

M A j 1-As
cug) = [[{1-scoxo 2o} {seoxezaa) o)
j=1
Mx —1/r Dsj
= ¢(b,) H <1 — [1 +rH(C,;)exp{B"X.; +v"Z. + eb*}l > (S.9)
j=1

—1/r 1-4y
X ( [1 +rH(C, ) exp{B" X.; +~7"Z. + Qb*}] ) :

Here we present the asymptotic properties of the penalized estimator when r > 0, the result for
r — 0 can be similarly obtained with the change of the expression S(Ci ;| X, ;, Z.,b,) in (S.9).
Analogous to (4), we also define the penalized complete ML estimator as

/[c,n = (ac,nTa ﬁc,n)T

. 1 - = ]
— arg min (g;&:{av;Mk(ﬂ eXp(wk)’gi} (S.10)

(OT K| My () exp(yy,)T

- f : H éMk(t) expwk)}(q)} 2dt> .

To study the space spanned by { My (t)}, we let S,,(7,,, Ly, d—1) denote the space of polynomial

splines spanned by a degree d — 1 B-spline basis with knots 7, = {71, 7, ..., 7.} where 0 = 75 <

11



<7< <7 <7Tre1 =Ty, L =L, =0(Mn/C*) with d > ¢. Furthermore, it is desirable
to restrict the knots such that maxo<i<y, |741 — 7| = O(n~/24D) as in Stone (1985). We also
let H,,(Ty, Ly, d) denote the space of polynomial splines spanned by d-degree I-spline basis, such
that each basis function in H,(7,, L,, d) is the integration of the corresponding basis function
in S,,(7n, Ly, d — 1) over the domain [0, 7], and that all the coefficients are positive. In other

words,

K

o L) = { 32 M0 exp(in) s 200) = [ Bl

k=1

By (s) is a basis function of S, (7, Ln,d — 1), k=1,... ,K},

where K = L +d. It is shown in de Boor (1978) that H, (7., Ly, d) C Sp(Tn, L, d). To simplify
the notations, we also denote ¢ = exp(t) with positive values, i.e., pr = exp(¢y), k=1,..., K.
We first note that for a fixed n, letting the tuning parameter A — 0 implies an unpenalized
estimate in the space spanned by the given polynomial space. On the other hand, letting A — oo
forces convergence of the gth derivative of the spline function to zero. For example, when ¢ = 3,
the limiting transformation function will be quadratic with respect to t.

We introduce some further notation to be used in proving results. Given a random sample
gis--.,g, with the probability measure P, for a measurable function f, define Pf = [ fdP as
the expectation of f under P and P,f = (1/n)> ", f(g;) as the expectation of f under the
empirical measure P,,. We write G,,f = /n(P, — P)f for the empirical process G,, evaluated
at f. Denote ||G,||r = sup;cz|Gnf|. Let || - || and [ - || be the Euclidean norm of R” and
the supremum norm, respectively. We will use v to denote a generic constant that may change
values from context to context. For two sequences {ay,} and {as,}, we let ay, < as, denote

a1, = O(ag,) and ag, = O(ay,), simultaneously.

Regularity conditions: Here we present the regularity conditions required to study the

asymptotic properties of the regularized semiparametric ML estimator.

(C1) The cluster size m, of a random cluster is completely random, and uniformly bounded

above. In addition P(m, > 1) > 0.

12



(C2)

The covariates (X I’l, X ZDT are uniformly bounded, that is, there exists a

*, M)

scalar v such that P{|[(X],,..., X[, ,Z])|| < v} =1, where || - || denotes the Eu-

*,M )

clidean norm. Moreover, all the eigenvalues of F [{(XL, e ,le*, VAR b*)T}®2] are

bounded away from zero and infinity, where a®? = aa' denotes the Gram matrix for

any generic vector a.

The conditional joint density of (O.|b.) has uniform positive lower and upper bound in

the support of the joint random variables O,.

The Ly norm of the true transformation function Hy(t) is bounded away from 0 and co.
Moreover, Hy(-) belongs to H, a class of non-negative and monotonic functions, with
zero values at t = 0 which are also continuously differentiable up to order ¢, d > ¢ > 2,

on [0, Tp].

O is a compact subset of RP, where p is the dimensionality of a.. Furthermore, oy is an

interior point of ©.

For any cluster size m,, there exits some k € (0, 1), such that

My )

aTvar{(Xll,...,XT Z*T,b*)T‘C’*,j,l <j< m*}a

> ka’ E[{(XT,,. . X1, 2100} Cp 1 < < ma

*, M

uniformly for all @ with a suitable length.

Condition (C1), in the case of a completely random cluster size, can be found in Zeng et al.

(2005).

(C2)—(C6) are widely used in semiparametric modeling of survival analysis (see, for

example, Huang and Wellner, 1997; Zhang et al., 2010) and usually satisfied in practice. Condi-
tions (C1)—(C4) ensure the proposed model is identifiable. In particular, (C2) implies that for
all (8,v,60) and v € R,

PB"X.;+~"Z.+0b. #v) >0, Vj.

Condition (C3) suffices to prevent the joint distribution of the covariates and the inspection time

13



from degeneration. For example, under (C3), we can show that

P(A*J‘ = 1‘0*7]' 7£ O) > O,
P(A*J‘ = O|C*7j ?é O) > 0.

Furthermore, it guarantees that the density function of (C,;|b.) is also bounded away from
zero and infinity in its support. Condition (C4) regularizes the nonparametric function to be
estimated. (C5) and (C6) are technical assumptions used to prove the rate of convergence and
asymptotic normality. Although some of these conditions can be relaxed to a weaker version, it
will make the proofs unnecessarily more complex.

The following theorem establishes the consistency of the penalized complete ML estimator.

Theorem S.1. Suppose the reqularity conditions (C1)-(C6) hold, L = O(n'/aV) and the

tuning parameter X satisfies A < n~24/(2a+t1)  Then

dist(Ze,n, Lo) = O, (n~9/ @), (S.11)

Semiparametric efficiency bound: For notational convenience, for a vector o with
suitable length, let lﬁc’l(L;g) denote the vector of partial derivatives of f.(¢;g) with respect
to a. For the nonparametric part, consider a parametric smooth submodel with parameter
(@', His))", such that Hs,) = H + sw € H for s in a small interval containing 0, with
Howy = H and {0H.)/0s}|s—0 = w. Let W be the class of functions w defined by this
equation. The score operator for H begins with defining the Gateaux (directional) derivative
at H along w: l.o(t;9)[w] = {0l(at, Hs.);9)/05}s=0. In addition, for w = (wy,...,w,)7
with wy, € W, k =1,...,p, let lfqg(L;g)[w] be the p-dimensional vector with its kth element

leo(e; g)wg]. If w! € WP and satisfies

w? = argmin E||0.1(¢; ) — Loa(e; g)[w]||, (S.12)
wewr

then w is called the least favorable direction, and by Theorem 1 in Bickel et al. (1993, pp. 70),
the efficient score for a is £, 1(¢; g) — leo(; g)[w?]. According to the result in Bickel et al. (1993),

the efficient information matrix of parameter a for the complete likelihood is given by

L(@) = E{l.1(t;9) — los(e; g)[w?]} . (S.13)
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Analogously, the efficient information matrix of parameter a for the observed likelihood is given
by
I(@) = E{ly(;U.) — l5(¢; 0.)[w*]}**, (S.14)

where fl, ég, and w* are the partial derivative of ¢ with respect to the parametric component
Gateaux (directional) derivative of ¢ with respect to the nonparametric component H, and the
corresponding least favorable direction, respectively.

The next lemma shows the existence of the least favorable directions w} and w*. Further-
more, the expressions of efficient information matrices I.(a) in (S.13) and I(e) in (S.14) can be

obtained.
Lemma S.1. Under conditions (C1)-(C4), the least favorable directions w} and w* exist.

For studying the asymptotic normality and efficiency, the least favorable direction must be
estimable in the sense that its roughness penalty is bounded away from infinity, which leads to

our last regularity condition.

(C7) The least favorable direction w? for the complete likelihood satisfies J(w}) < oo.
(C7’) The least favorable direction w* for the observed likelihood satisfies J(w*) < oo.

Theorem S.2. Suppose that all the assumptions given in Theorem 2 hold and the regularity
condition (C7) is satisfied. Then, n*/?(@, — ) converges to N'(0,1 () in distribution,
where I.(oy) is the efficient information of o with expected value at g for the complete likelihood,

and is assumed to be non-singular.
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S.2.2 Proof of Lemma 2

Proof of Lemma 2. Suppose that (,@,’7, 5, H ) gives the same observed likelihood function as of

(Bos Yo, 00, Ho). This supposition and and Condition (C1) imply that
N N gy B
(1 - {1 +rH(C,;)exp{B " X.; +7"Z. + Gb*}} )

_ N " —1/r 1=y
X ( [1 +rH(C,;)exp{B" X., +¥"Z. + Qb*}] )
(S.15)

—1/r Asj
ES (1 — {1 + T’Ho(C*J) exp{,BOTX*J- + 'YOTZ* + eob*}:| )

~1/r 1-Ayj
X < |:1 + THO(C*,j) eXp{BOTX*J + ’YOTZ* + eob*}:| ) .
After using (C3) and choosing A, ; = 0 in (S.15), we then obtain
" " " 1/r
[1 +rH(C,;)exp{B"X., +7 Z. + Hb*}}
1/r
= {1 +7Ho(Coj) exp{By' X.j + 7o' Z. + Gob*}] :
From the monotonicity of (1 +72)Y" (r > 0) w.r.t. z, the aforementioned equation implies that
H(Cyj)exp{B"X.; +7"Z. +0b.} = Ho(C..;) exp{By X.j + 7' 2. + Oob.}. (S.16)

We use Conditions (C3) and (C4) to get that with positive probability, we can fix C, ; # 0 such

that both F[(C’*J) and Hy(C, ;) are not equal to zero. (S.16) together with (C3) then imply that
BTX.; +7 Z, +0b. =By X+ Z. +0ob. +v

for some v. Using (C2), it shows that (3,7,60) = (B9, Yo, 6o). The conclusion of H = Hy follows

after plugging this result into (S.16).

S.2.3 Proof of Theorem S.1

To prove Theorem S.1, we first need the following technical lemmas.
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Lemma S.2. If Conditions (C1)-(C7) hold, then, for a sufficiently small 6 > 0, there exists
a constant v > 0 depending on Py such that ||H||. < v{J(H) + 1} whenever H € H and
HH — H0||2 < 9.

Proof of Lemma S.2. Because |H — Hyl|s < 0 for a sufficiently small 6 > 0, it implies that there
exist disjoint intervals [a;, b;] C [0, Tp] such that H(a;) < H(b;) and f[%bi]{H(t) — Hy(t)}2dt < &2
foreachi = 1,..., k. Therefore, there exists t; € [a;, b;] satisfying { H(t;)—Hy(t;)}?* < vé%. In view
of the fact that Hy is uniformly bounded on [0, Tp), it follows that H(t;) < K4 for some constant
Ks depending on §. For any H € H with J(H) < oo, Condition (C4) and ||H — Hyll2 < ¢
with sufficiently small ¢ imply that J(H) is also bounded away from 0. Thus there exists a
polynomial spline H € S(, L, d) such that |H — H||e < vg~® < J(H) (sce, for example, the
proof of Lemma 7.2 of Murphy and van der Vaart, 1999) with d large enough. It follows that
H (t;) < J(H)+ H(t;) < J(H) + Ks. Using the approximation property of polynomial spline
(de Boor, 1978), || H e < v{J(H)+ K5}, and ||H||s is bounded by v{.J(H)+1} accordingly. [

Lemma S.3. If Conditions (C1)-(C7) hold, then there exists a constant v > 0 such that
P{l:(t;9) — le(t0:9)}* = vlle — o2
for ¢ in a neighborhood of tg.

Proof of Lemma S.3. From the complete likelihood function (S.9), it is shown that

P{l.(t;9) — lc(to;9)}°

= / <Z(1 — A, ) [1og{Se(Cj| X s j, Zs )} —log{Ssucp,to(Cu | X gy Z., 0. )}]

j=1
+ Z A*vj [log{l - SL(C’*,j|X*7j7 Z,, b*)} - log{l - Sbo (C*,j|X*7j’ Z, b*)H
j=1
2
+ {log 6(b.) ~log 0(0.)} ) P, (8.17)

where S (Cs ;| X 4 ;, Z, by) and ¢(b) respectively denote the survival function of the time-to-event

in the susceptible population given in (1) with parameter ¢ and probability density function of
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b which is N(0,1). Using Conditions (C3) and (C5), to show (S.17) greater than or equal to
|t — ¢o]|2, up to a constant, it suffices to show that

2
/ (Z [log{1 — Ssucp,e(Cuj| X v j, Zu; 0.)} —log{1 = Ssucp,to(Cu | X v j, Z., b*)}]) dp
1

j=
> o{[18 = Boll” + Il7 — voll* + (0 — 60)* + |1 H — Holl3},

(S.18)
for some constant v > 0.
Next, we first show the following simplified version of (S.18)
/ [108;{1 - SSUCp,L<C*,j’X*,j7 Z,,b.)} —log{l - SSUCp,Lo(C*,j‘X*,ja Z,, b*)}]2dP (S.19)

> 0{l1B = Boll” + I = Yoll* + (0 — 60)* + |1 H — Ho[3}-

Let g1(s) denote
log [1 — {1+ 7rH,(C.j)exp(B," X.j +7, Z.+ 956*)}71/10] :

where H,(C\ ;) = sH(C, ;) + (1 —s)Ho(C\ ), B, = sB+ (1 — 5)By, vs = 57+ (1 — s5)7,, and
0s = s0+4(1—s)0y, respectively. The term inside the integral of the left hand side of (S.19) is then
equal to {g1(1) — g1(0)}2. Application of the mean value theorem leads to g;(1) — g1(0) = ¢/ (¢)
for some 0 < e < 1. It is shown that
S0 ({1 +rHA(Coy) exp(B Xy + 7. Z. + 00} " exp(B.T Xy + %TZ; - Geb*)>
1= [1+r{Hy+e(H — Hy)}(C.;) exp(BT X + 7.7 Z. + 0.)] "
X |(H = Ho)(Cuy) + {Ho + e(H = Hy)}(C.5)
% {(B=Bo) Xy + (v = 70) Ze + (6 — 60)b.}]
({14 rHA(Cy)exp(BT X+ Z. + 966*)}_1/r_1 exp(B." X.; +v."Z. + 6.b.)
- ( 1= (1 r{Ho+ e(H — Ho)}(C. ;) exp(B,TX.; + 4.7 Z. +0b)] " >
X [(H = Ho)(Cog) {1+ (B = B) Xy + ey = 70) Z0 + (60 — o).}
+ Ho(Co){(B = Bo) Xy + (v =70)" 2. + (0 — 90)5}]
= 1(Cugo Xy Zcb) - [(H = H)(C) {1 4+ (8 — Bo) X+ ely — 7o) 2.+ 0~ )b}

+ Ho(Co){(B = Bo) Xy + (v = 7o) 2.+ (0 = 0)b.}]

where g; . is a function of random variables (C. ;, X . j, Z.,b.). From the application of the mean
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value theorem and Conditions (C2)—(C5), we have
/[log{l - SSUCp,L(C*,j|X*7j, Z*, b*)} - 108;{1 - SSUCpJ/o (C*7j|X*,j7 Z*, b*)}] 2dP
> [ (= H)Cp) {1+ B = B) Xy ey =) 2o+ 060} (520
T T 2
+ Ho(Cog){(B = Bo) X + (7 = 40) Zo + (0 — )0} | P
up to a constant. To simplify the notations, we let go(C.j, X, ;, Z.) = {(B — By)" X.; +

(Y = 70)"Z. 4 (0 — 00)b. } Ho(C.j), g3(Cuj) = (H — Ho)(C. ), and 9(Cy;) = 1+ e(H —
H)(Cy;)/Ho(C. ), respectively. To show (S.19), it thus suffices to verify

P (g0 + g3)* > 1B = Boll> + I — Yoll> + (6 — 60)3 + | H — Holl3 (5.21)

up to a constant. To apply Lemma 25.86 of van der Vaart (1998), we need to bound {P(g2g3)}?

by a constant less than P(¢g3)P(g3). By then computing conditionally on C, ;, we have

{P(g294))” = [P{P(g29/C..)}]”
< P(¢3)P[{P(63/C..,)}]
= P(g})P[HE(C.) {((B= BT (v = %) 6 — )
x [{P(XT,, Z7,0)TIC. ;172 (B = Bo)T, (v = 7o) .0 — 60) T}
< (1= AP(EP{HC.H) (B~ Bo)T (v = 7o) .0 — b0)
X PI{(XT,, ZT,6)TF2C.,) (B = Bo) T (v = 70).0 — 60) T}
= (1 - ®)P(g3)P(g3),

where the first and second inequalities follow from the Cauchy-Schwarz inequality and Condition

(C6), respectively. Thus by Lemma 25.86 of van der Vaart (1998) and Conditions (C2)—-(C4),
P(g20 +g3)* 2 P(g3) + P(g3) 2 18 = Boll” + llv = ¥olI* + (0 = 00)” + [ H — Hyl3,

where 2 denotes > up to a constant.
The last step is to show (S.18) from its simplified version (S.19). Indeed, it can be completed

by using Condition (C1) and similar arguments as shown in the proof of (S.21). O
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Proof of Theorem S.1. To prove the claimed rate of convergence, we first show the consistency

of the penalized estimator. Define

1 A
mex = log (pb2 pO) ~ 2UJ2(H) — J(H))
Po 2

Under the order assumption of A, we may assume that A € A, = [Xn, o0) for

A = n~20/(0120), (S.22)

By the concavity of the logarithmic function, the relationship between p, and ¢.(¢; g), and the

definition of 7,

1 D A ~
Pymg | > 51{% log (L—> — 5{J2(Hc,n) — J2(Hp)} > 0 = P,my, 2.

Do

It can also be shown that

Pe + Do
2po

A
Pomes — muga) = [ log P Py — SL(H) — ().

Since log(z) < 2(x'/2 — 1) for x > 0, it follows that

1 + +po\ ' 1
—/log (pb po)podué/(m po) podu—lz—ZhQ(p:, + po, 2po),

2 2po 2po

where h(py,po) is the Hellinger distance defined as h*(py, po) = [ (pi/ 2 pé/ *)2dp. Hence,

1 A
Po(my s —mu, ) < —§h2(pb + Po, 2po) — §{J2(H) - Jz(HO)}‘
Using page 328 of van der Vaart and Wellner (1996), we have that

h(pe + po, 2p0) < h(pe,po) < 2h(pe + po, 2po)-

Thus the squared Hellinger distance h?(py + po, 2po) is equivalent h?(py,po), up to a constant.
Theorem 3.4.4 of van der Vaart and Wellner (1996) and Condition (C3) imply that

Po{log(p,) — log(po)}* < vh*(pe, po),

for some constant v. Hence, in view of Lemma S.3 and Condition (C3), it follows that

Po(my s —meen) S —lle = wol2 = AJ*(H) + A,
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where < denotes < up to a constant. This suggests the choice of
1/2
dy(t — to) = {||t — tol|2 + AJ2(H)|} (S.23)

in Theorem 25.81 of van der Vaart (1998). Next, using the same arguments as those in Lemma

7.2 of Murphy and van der Vaart (1999), it can be shown that

1+ M 1/q
i > , (S.24)

sgp log N (e, {my o, €O, J(H) < M}, LQ(Q)) < v( -
where Npj denotes the bracketing number of the metric space (the minimum number of e-brackets
in Ly(Q) needed to ensure that every function in {m, ¢, € ©,J(H) < M} is contained in at
least one bracket). Under the choice of (S.23), dx(¢ — ¢o) < 0 implies that J(H) < 5/:\?/? Using
this fact, Lemma 2.1 of van de Geer (2000), Theorem 2.14.1 of van der Vaart and Wellner (1996),
and (S.24) together imply that

J

1/(2q)
Py sup |Gn(mb,/\ - mLo,/\)’ <v (1 + ~1/2) )
dx(L—Lo)<SNEN, A

Theorem 25.81 of van der Vaart (1998) yields dy(Zen — to) = O,(6, + n~91+29) for any §, | 0
and 6, > (n22),)/®=2) which concludes the consistency of Ten by (S.22).

To show the rate of convergence, using Lemma S.2, it is reasonable to restrict H to the set
Hy = {H : [|[H|lo < v(J(H)+ 1)} for a large constant v. If dy(¢ —¢¢) < § and A € A, then
e — wllz < 9, J(H) < 5/;{71/2, and hence, ||H| < v(é/;{}lﬂ + 1). Using Taylor expansion
along with condition (C1), (C2), and (C5), it can be shown that the parametric part of my g is
essentially Lipschitz with respect to a. The above two facts and Example 19.10 of van der Vaart

(1998) imply that
1+ 5/X3/2)1/‘1

€

log Ny (€, {muo : A € A, H € Ho, da(e — 1) < 8}, Lo(Py)) < U(
Thus, Lemma 19.36 of van der Vaart (1998) shows that

Jn (0
P, sup |Gy (myy — M )| < an(cS){l + L}’
dx(L—Lo)<ENEN,
where

0] NL/2\ 1/(29) 1/(2q)
@) = [ (AN T e (1 D) T e g gi-i/e gy aeasny,
0 € 22
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for some constant v. Therefore, Theorem 25.81 of van der Vaart (1998) implies
[Zen — tollz = Op(0n + An) = Op(8, +n~ ¥/ (1H20)), (S-25)

with 9,, satisfying

52nl/2

Brief calculation shows that the optimal rate of 6, in the aforementioned equation is n~%/(1+24),

This result together with (S.25) completes the proof of Theorem S.1. n

S.2.4 Proof of Lemma S.1

Using Condition (C1), we directly calculate that

éc,l(l’; g)

_ i(l NG {—H(C*,j) exp(BTX,; +~TZ. +0b,)(X.;", 2.7, b*)T}
=1 " L+ 7rH(C, ) exp(BT X, ; + T Z, + 0b.)

+ iA ‘ ( {1 + TH(C*J) eXP(BTX*,j +'7TZ* + gb*)}—l/r—l >
7=1 ¥ 1— {1 —|—7”H(C*’]) eXp(IBTX*J- —|—’7TZ* +9b*)}_1/r

x H(C.j)exp(B" X+ Z, +0b.)(X.;", 2.7, b.)" (5.26)

- Z H(C,;)exp(B"X.;+7 Z.+0b)(X.;", Z.",b)"
j=1
A*J{l +rH(C.;)exp(B"X.; + 4" Z. + Qb*)}l/r
L {1 rH(Coy) xp(BTX oy + 47 Z. 1 00))
B 1
1+rH(C.;)exp(BTX ., + T Z, + 6b,)

After denoting

Qej(Cujy Xujy Zi, by t)
A {1+ rH(Cy) exp(BT X+ 2.+ 00) )
L= {1+ rH(C))exp(BTX oy + 7" 2o+ 00,)}
B 1
1+rH(Cy;)exp(BTX.; +YTZ, + 0b,)

= exp(8' X.j + 7' Z. + 0b.)

)

(S.26) can be written as
lea(t;9) =Y H(C.j)Qey(Cuji Xoj, Zu b ) (X", Z.7,0.)T. (S.27)
j=1
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Similarly, differentiating the complete log-likelihood function ¢.(¢; g) at H along w yields

Mx

éCQ(l’; g)[w] = Z w(C*,])QC,J(C*,]7 X*,j) Z*7 b*7 L)7 (828)
j=1
where w € W be the class of functions such that H + sw € H for s in a small interval con-

taining 0. Moreover, for w = (wy,...,w,)" with w, € W, k = 1,--- |p, let égg(b;g)[’l,U] =

(Cea(t; @) [wr), .., lea(e; g)[wp])T. To see that w} exists in (S.12), we only need to show that the

normal equation

EC;5(1:9)ca(t:9) — B 5(t:g)lea(e: g)[w?] = 0
has a solution, where €2’2(L; g) is the adjoint operator of £.5(¢; g) (van der Vaart, 2002). Expres-
sion (S.28) implies that £.5(¢; g) is self-adjoint, and thus, writing that C, = (C,1,...,Cem,)T,

Bl ) {3 Qei(Cuy Xojy Ze, bis 1)} CL]

wi = T (S.29)
E[{325% Qej(Cujy Xujs Zss b 1) 12| C

exists, provided (C1)-(C4) hold, where /.1 (¢; g) is given in (S.27).
The efficient score of a for the complete likelihood is fo1(¢;g) — Leo(t; g)[w?]. The efficient

information of a for the complete likelihood thus takes the form of

L(e) = E{io1(t:9) — fon(e: g) ]}
®2

=E| Y Quj(Cojy Xuj, Zu, b ) {H(Cj) (X ;T 2.7, 0)T —wi}|

j=1
with w? given in (S.29).

Using similar arguments above and a different expression of Q.; in (S.29) based on the
observed likelihood function, we can prove the existence of w* and obtain a form of I(a). The

proof is thus omitted.

S.2.5 Proof of Theorem S.2

Proof of Theorem S.2. We first notice that 7., maximizes the penalized (complete) likelihood

(S.10) rather than an ordinary likelihood, thus ., does not satisfy the efficient score equation

]Pn{éc,l([’;g) - éc,a(b;g)[wi]} = 0.

23



However, if we can show that the distance between ., and the efficient estimator is bounded
above by 0,(n"1/2), then the result follows.

To show this, we first show that

Po{len(@oni 9) = Cep(Bon; 9)wi]} = 0p(n1/?) (5.30)

which can begin with studying the upper bound of the penalization term. Indeed, if we plug
(e ptsa)T, ﬁc,n—sw)T with w € WNH, satisfying J(w) < oo, into the penalized log-likelihood

function (S.10), where a is a p-dimensional vector. Differentiating at s = 0, it is shown that
Po{lei(Cen; 9)Ta — Leo(Ben; g)[w]} + A / (H.)@ (t)w'@(t)dt = 0. (S.31)

Using the Cauchy-Schwarz inequality, the )\f(ﬁc,n)(q) (t)w'?(t)dt is bounded by /\J(ﬁc,n)J(w).

In Theorem S.1, it has been shown that

Readers are also referred to Lemma 7.1 of Murphy and van der Vaart (1999) for additional

auxiliary results. Moreover, it is assumed that A\ = 0,(n"*/2), thus it follows that
NI (H, ) J (w) = o,(n~"2). (S.32)

As a result, the penalized estimator ., satisfies the efficient score equation, up to a negligible

0,(n~1/%) term. It is obvious to show that (S.31) is free of @ and thus
Po{lc1(Ten;g)} = 0. (S.33)
(S.31) and (S.32) together imply that for any w € W N H,,

Po{oaGens g)w]} = 0,(n"/2). (5.34)

We next only need to verify P,{lc2(Zen: g)] wil} = o0,(n7/?)

for least favorable direction w?.
Because each component of w} has a bounded derivative, it is also a function with bounded

variation. Using the arguments in Billingsley (1995, pp. 415-416) for functions with bounded

24



variation and Jackson’s Theorem in de Boor (1978, pp. 149), it can be shown that there exits a

w, € (WNH,) such that |[w, — w?||y = O(n~"+V). Furthermore, we have
P{fc(ao, Hy + saT(wi - wn)Qg)} < P{fc(ao, H();g)}

for s with small absolute value and @ € R?, then P{/,5(t; g)[w* — w,]} = 0. Therefore we can

write
P {le(Cen; 9)wi]} = ln + T,
where
L = (P = P){lea(Ten; 9)[w] — w,]}
and

IZ,n = P{écﬂ(/l’\c,n; g)[w: - wn] - éC,Q(l’O; g)[wz - wn]}

Let I, be k-th component of I ,, and denote
Ay = {écg(b;g)[wzk — Wnp) 1 L €O X Hyy wnpy € WNH, and [[wy), — wppll2 < vn_l/@q“)},

k =1,...,p. It can be argued that the e-bracketing numbers associated with Lo(P)-norm
for ©, Hy, and {wnp € WNHy, o |lwly, — wagle < on™ @D} are v(1/e)?, (1 /€)om/ P
and v(l/e)“"l/@qﬂ), respectively. Therefore, the e-bracketing number for A;; is bounded by
o(1/e)P(1/e)r ™ (1/€)vn/*™) | which results in a P-Donsker class for A;,, by Theorem 19.5

in van der Vaart (1998), k =1, ..., p. Since

lep(Len; g)wyy, — wn i) € Ay
and as n — 00,
P{ Lo (T @)l — wnsl } < vllwly = waslZ = 0.
then by Corollary 2.3.12 of van der Vaart and Wellner (1996) we have
Lpr=o0,(n"Y? k=1,...,p. (S.35)

By the Cauchy-Schwarz inequality and Conditions (C2)—(C5), it can be shown that each com-
ponent of I,
Iy = P{éc,Z(/’/\qn;g)[ka — W k] — éca(’JOS 9)[“’:,19 - wn,k]}

(S.36)
< v - dist (L, to) | wh ), — Wnklloo = 0,(n"1/2),
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k=1,...,p. (S.35) and (S.36) imply that
Pn{écQ(Z\c,n;g)[w:,k]} = Il,n,k + I2,n,k = Op(n_1/2)7 k= 17 <oy D (837)

Thus, (S.31), (S.33), (S.34), and (S.37) together show that (S.30) holds.

We then show the asymptotic normality and efficiency of the estimator e, using Theorem
25.54 in van der Vaart (1998). For notational convenience, in the following, let £ oy 17(g) denote
the semiparametric efficient score function under general o and H for the complete data like-
lihood. We also write PLanﬁ as an abbreviation for leaﬁ(g)dp,,, which is an integration
taken with respect to g only and not with respect to & nor H. Under the result of (S.30), we

only need to verify conditions

P&, by Lo inn = 002 4 [[Gcn — o)), (S.38)

and

2=0,(1). (.39)

~ ~ 2 P ~
PO ch,ac,n,ﬁc’n - gc,ao,Ho H % 07 Pac,nyHO Hgac,nyﬁc,n

For (S.38), in view of the fact that Pa,HZa,H =0 for all (o, H), write

Pac,7L7H0 Ecaac,ruﬁc,n = (PO - Paoj'\lc,n)éc’ao’Ho + (Pac,naHO B P/a\c,nyﬁ )(éca/a\c,n,ﬁc,n - gc’aO’HO)

c,n

+ (PaOaﬁc,n - PO - Pac,nj"}c,n + P/a\c,nyHO)Ec’ao’Ho

- IS,n + I4,n + ]5,71-
(S.40)

The definition of efficient score in van der Vaart (1998, pp. 369) shows that Zc,ao, , 1s orthogonal
to all functions in the span of £,4(¢0). It then yields

po - pa07ﬁc,n

<P0 - Pao,ﬁchC,ao,Ho = POKC,QQ,HO { p
’ 0

- éc,2<a07 HO)(HO - I/——}c,n)} .

Using the Taylor expansion, it is possible to show that

o= Poy, 1 ocnnl < [ Tl |Sosparo o]

for 0 < s < 1. Straightforward differentiation and Condition (C3) imply that

d2
d$2pa0»H0+S(ﬁc,an0)

26



~

can be upper bounded by v(H., — Hy)? for a positive constant v independent with g and all s.

It follows that I3, = Op(l)HfIc,n — Hyl3. By the Taylor expansion, Iy, can be written as

~ o~

/(Zc7ac,n7ﬁc,n - éc,O(g,H())éQ(ac,na HO)(HO - Hc,n)podu

1 d?
B 5 /(gcyac,nyﬁc,n B gc’ao’HO)@pac,nyHO‘i‘s(ﬁc,n_HO)d/l“

Since @, converges to oy as shown in Theorem S.1, |lﬁc72(acvn, Hy)(Hy— f]cn)| is upper bounded
by |PAIcn — Hy|, up to a constant not depending on g, with probability approaching 1. This, along

with Conditions (C2) and (C5), implies that

B —locvy | < v - dist(Ton, to)?

¢,Oen,Hen

on an event with probability approaching 1. Moreover, (d?/ dsQ)pacm Hot s(WenhHon—Hy) 15
bounded above by (I/-\Icn — Hy)?, up to a constant, with probability approaching 1. It thus follows
that Iy, = Op(Hﬁ[c,n—Hng—i— |oten, — | Hﬁcn — Hy||2). We further use the Taylor expansion and
the Cauchy-Schwarz inequality to obtain that I5, = O, (|[Z.. — tol|3 + || G — o] ||}AIM — Hyl2).
Therefore, (S.38) follows from the rate of convergence of ., and PAIM as shown in Theorem S.1.

For (S.39), we first use the dominated convergence theorem and the consistency of ., to

obtain that Py HZa — Zao, Ho H2—>O in probability. Furthermore, by the consistency of &,

c,n,Hc,n

it can be shown that P HOHZ/Q\C” ﬁc’nHZ = O,(1) with similar arguments as those shown in

(S.35). As a result, (S.39) holds. To sum up, it is possible to use the results in Theorem 25.54

of van der Vaart (1998), and thus a., is efficient. O

S.2.6 Proof of Theorems 2 and 3

We only need to show the similar result as in Lemma S.3 such that
P{l(t;9) — €(to; )} > vl|e — o2, (S.41)

whenever dist(¢,¢9) < e for some constant ¢ > 0. Indeed, the left hand side of (S.41) can be

P[log {/ﬁc(b;g)db*} — log {/EC(LD;g)db*Hz > |t — 10| . (S.42)
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Next consider L.{st+ (1 — s)to; g}, and then following the proof of Lemma S.3, it can be shown
that the left hand side of (S.42) is bounded below by

o (0109 [ Lefse + (1= 9eargydb. — [ Lo(eorg)db]], )’
[ Lfer + (1= €)eo; g}db, ’

for some € € [0, 1]. By Conditions (C3)—(C5), it thus suffices to show

P 2
P (/ 55 [EC{SL + (1 —$)eo; 9} — Ec(Lo;g)] Lzedb*> > vlje — LOHQE.

Using the mean value theorem and the proof in van der Vaart (2002, pp. 431), the aforementioned
equation is satisfied, which completes the proof of (S.41) as a consequence. The rest of the proof

follows the same arguments as in Theorems S.1 and S.2, and are thus omitted.
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S.3 Additional simulation results

Table 1: Results of the simulation study for f = —1 and v = —1 with 5 interior knots.

Here RB, 1%7 SD, SE, and CP denote the relative mean bias, the relative median bias,
the standard deviation, the median of estimated standard error, and the 95% coverage
probability, respectively. PAR: Parameter.

P 0 =2 0=1 =05
A
Rl RB RB SD SE CP| RB RB SD SE CP| RB RB SD SE CP
n = 300
r—0
B1-0.01 —0.02 0.14 0.13 0.92|—0.01 —0.01 0.11 0.10 0.94| 0.00 0.00 0.09 0.09 0.95
~[—0.02 —0.02 0.28 0.25 0.94| 0.00 0.00 0.15 0.14 0.94| 0.00 0.00 0.10 0.10 0.95
9 |—0.01 —0.03 0.27 0.19 0.90/—0.01 —0.02 0.12 0.10 0.93|—0.02 —0.02 0.08 0.08 0.96
r=1

B1-0.01 —0.01 0.16 0.15 0.95| 0.01 0.00 0.14 0.13 0.94| 0.00 0.00 0.12 0.12 0.95

v |—0.02 —0.01 0.27 0.26 0.94| 0.02 0.01 0.19 0.16 0.93] 0.01 0.00 0.14 0.13 0.92
f|—0.01 —0.02 0.26 0.18 0.93| 0.00 —0.03 0.21 0.12 0.93|—0.03 —0.04 0.17 0.15 0.94
r=2
5| 0.00 0.00 0.23 0.20 0.92/—0.01 —0.02 0.19 0.18 0.93| 0.01 0.00 0.17 0.17 0.96
v| 0.01 —0.01 0.30 0.29 0.95| 0.03 0.02 0.21 0.20 0.93| 0.00 —0.01 0.19 0.18 0.94
#| 0.01 —0.02 0.33 0.20 0.91|—0.01 —0.03 0.24 0.18 0.93|—0.03 —0.04 0.26 0.24 0.93
n = 1000
r—0
£1—0.01 —0.02 0.08 0.07 0.93| 0.00 0.00 0.05 0.05 0.95| 0.00 0.00 0.05 0.05 0.94
~v1 0.01 0.01 0.150.13 0.93|—0.01 0.00 0.08 0.08 0.95| 0.00 0.00 0.06 0.06 0.94
6 1—0.01 —0.02 0.17 0.10 0.92| 0.00 0.00 0.06 0.06 0.95| 0.00 0.00 0.05 0.04 0.95
r=1
£1—0.01 —0.02 0.09 0.08 0.94| 0.00 —0.01 0.08 0.07 0.94| 0.00 0.00 0.07 0.07 0.94
v 1—0.01 —0.01 0.14 0.14 0.95| 0.00 —0.01 0.09 0.09 0.95| 0.00 0.00 0.07 0.07 0.94
#| 0.00 0.000.150.10 0.90| 0.00 —0.01 0.09 0.07 0.94|—0.02 —0.02 0.08 0.08 0.97
r=2

£1—0.01 0.00 0.11 0.11 0.95| 0.00 —0.01 0.11 0.10 0.94| 0.00 0.00 0.10 0.09 0.94
0.00 —0.01 0.16 0.15 0.95|—0.01 —0.02 0.13 0.11 0.93| 0.00 —0.01 0.11 0.10 0.95
-0.01 -0.02 0.15 0.11 0.91} 0.01 —0.01 0.18 0.10 0.92| 0.02 0.02 0.16 0.13 0.91

> 2
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Table 2: Results of the simulation study for 6 = 3.5, f = 2, v = -2, and 7 = 2 with 5 interior
knots. Here RB, RB, SD, SE, and CP denote the relative mean bias, the relative median bias, the
standard deviation, the median of estimated standard error, and the 95% coverage probability,
respectively. PAR: Parameter.

P n = 300 n = 1000

A
Rl RB RB SD SE CP| RB RB SD SE CP

£1—0.01 —0.02 0.22 0.23 0.96|—0.01 —0.02 0.12 0.13 0.96
v{—0.05 —0.05 0.43 0.43 0.94|—0.03 —0.03 0.24 0.24 0.93
6 |—0.04 —0.04 0.24 0.32 0.96|—0.03 —0.03 0.13 0.18 0.96
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Table 4: Comparison of the average computation time in seconds for the proposed MM algorithm
and direct maximization using the regular Newton-Raphson (NR) method. This comparison is
for r — 0 (the PH model), § = —1, v = —1, and § = 0.5.
k=2 k=5
n MM NR MM NR
300 19.11 191.15  29.22  846.97
1000 65.57 1030.70 114.45 5262.27
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