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Summary

Accelerated failure time (AFT) model is a popular model to analyze censored time-to-event data.
Analysis of this model without assuming any parametric distribution for the model error is challeng-
ing, and the model complexity is enhanced in the presence of large number of covariates. We develop
a noparametric Bayesian method for regularized estimation of the regression parameters in a flexible
AFT model. The novelties of our method lie in modeling the error distribution of the accelerated
failure time non-parametrically, modelling the variance as a function of the mean, and adopting a
variable selection technique in modeling the mean. The proposed method allowed for identifying a
set of important regression parameters, estimating survival probabilities, and constructing credible
intervals of the survival probabilities. We evaluated operating characteristics of the proposed method
via simulation studies. Finally, we apply our new comprehensive method to analyze the motivating
breast cancer data from the Surveillance, Epidemiology, and End Results (SEER) Program, and esti-
mate the 5-year survival probabilities for women included in the SEER database who were diagnosed
with breast cancer between 1990 and 2000.
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1 Introduction

We start this section with some discussions of the motivating data. The Surveillance, Epidemiology,

and End Results (SEER) Program [1] routinely collects population-based cancer patient data from 20

registries across the United States. In existence since 1973 and housed within the National Cancer In-

stitute (NCI), it is one of the most important, comprehensive, and widely used sources of information

for studying the survival of cancer patients. It is of scientific and public interest to estimate 5-year sur-

vival probabilities for cancer patients and to understand how prognostic and demographic factors im-

pact survival. This information is routinely used in determining treatment plans and for making pol-

icy decisions. Importantly, the National Cancer Institute uses these survival probabilities to compute

the 5-year relative survival rates (http://seer.cancer.gov/archive/publications/survival/).

It is well-known that overall these survival probabilities depend, at least in some degree, on

the following 8 disease characteristics or prognostic factors: 1) stage of the disease at the time of

diagnosis, 2) tumor grade, 3) histology, 4) tumor size, 5) extension of the primary tumor, 6) nodal

involvement, 7) estrogen receptor (ER) status, and 8) progesterone receptor (PR) status, and two

demographic characteristics: 9) age at diagnosis and 10) race. As documented in a SEER publication

[2, Chap. 13], these characteristics not only exert main effects on the relative survival rate but there

also exists an interaction effect of any two characteristics. The survival probabilities were calculated

based on the life-table approach [2, p. 102] considering at most two characteristics at a time. In some

occasions, due to small sample sizes, the survival probabilities were not calculated, resulting in some

empty cells in Tables 13.5, 13.6 and 13.8 of the document, for example. Also of critical concern, the

published rates do not accompany any uncertainty measures such as the standard error.

To calculate more meaningful survival probabilities, one thus needs to take into account several

factors (not just one or two) and their interactions simultaneously. Motivated by this scenario, we

consider an accelerated failure time (AFT) model and propose a regularized estimation method.

Due to having the linear model structure and easy interpretation of the model parameters, accel-
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erated failure time (AFT) model is a popular choice after the proportional hazard model for analyzing

censored data. Suppose T is the time-to-event and Z is a q-vector of covariates, then under the AFT

model

Y = log(T ) = ZT β + e,

where β denotes the regression parameter for Z, and e denotes the residual term. A parametric AFT

model is obtained if a parametric distribution is adopted for the residual e, whereas the nonparametric

AFT model is obtained when the distribution of e is left unspecified with some mild regularity

conditions. The nonparametric AFT model is studied extensively in the frequentist arena ([3]; [4];

among others) as well as in the Bayesian paradigm ([5]; [6]; [7]). To date, most papers reporting

on the use of the AFT model include, as an assumption, that the residual term of the model is

independent of the predictors.

Here we are concerned about the selection of important variables and estimation of the regres-

sion coefficients when q is large, and in this case regularized estimators are commonly used where

estimators are obtained by maximizing a penalized objective function. In that respect least shrink-

age selection operator (LASSO) has been widely used. If there is no censored observation then the

LASSO estimators are obtained by minimizing

n∑
i=1

{Yi − Y − (Zi −Z)T β}2 + λ

p∑
j=1

|βj|,

where Y =
∑n

i=1 Yi/n and Z =
∑n

i=1 Zi/n, and λ > 0 is the penalty parameter. In the classical

paradigm, the unknown penalty parameter is determined by some cross-validation method. Tibshi-

rani [8] first used the LASSO method for variable selection in the Cox regression model. Although

LASSO works well for the best subset selection, generally the non-zero parameters are estimated with

asymptotic bias ([9], [10]). Zou [11] showed that in a linear regression model, under some nontrivial

conditions, LASSO satisfies oracle properties (identifies true non-zero set of covariates and for the
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non-zero coefficients, the asymptotic distribution of the estimator minus the true parameter follows

a mean-zero normal distribution). Additionally, Huang et al. [12] investigated the oracle property of

the LASSO estimator in the Cox model for sparse and high-dimensional covariates (i.e., q >> n).

In the nonparametric AFT model, Huang et al. [13] showed that the LASSO is asymptotically

consistent when q is fixed, and n gets large. Their result even covers the case where the variance of e

may depend on the covariates. Although there are several works on Bayesian variable selection in the

parametric AFT model ([14]; [15]), as far as we know, there is no Bayesian variable selection work

in the nonparametric AFT model. The aim of this paper is to apply the Bayesian variable selection

technique using LASSO in the AFT model where the residual e is modeled nonparametrically. There

are two reasons for considering the AFT model, 1) easy interpretation of the model parameters and

2) the Bayesian variable selection has been largely unexplored in a nonparametric setting.

One big advantage of the Bayesian regularization is that the penalty parameter can be easily

estimated by putting a prior on this. Then the Bayesian mechanism allows the prior to integrate

with the data. Secondly, we treat the residual e nonparametrically by modeling its distribution via a

Dirichlet mixture of normal densities. We use a Dirichlet process mixture of normals to gain complete

flexibility of the model. It is known that a mixture of normal distributions is more flexible than a

single normal distribution that requires one to specify the number of mixing components. On the

other hand, in a Dirichlet process mixture of normals, that theoretically allows an infinite number

of mixing components, the number of mixing components is not fixed but allowed to be determined

in a data-driven way resulting in a more flexible model for e. Finally, we relax the independence

assumption between the residual and the predictors– what this means is that different groups formed

by a level combination of the predictor variables, not only have different means for the survival time,

but may also have different variances. It is well known that proper modeling of the variance not only

increases accuracy of the regression coefficients, but in our case, will accurately measure the survival

probability. This comes at the cost of increased complexity compared to the case where the residual
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term of the AFT model and covariates are assumed independent. We assume that the variance is a

polynomial function of the mean. In the generalized estimating equation context, Chiou and Müller

[16] modeled the variance as a smooth function of the mean. Kauermann and Wegener [17] discussed

variance modeling in some other contexts. But to date, no one has considered variance modeling in

the context of an AFT model.

A brief outline of the rest of the article is as follows. Section 2 introduces models, assumptions,

and priors. Posterior computation is given in Section 3. Section 4 provides an estimation of the

survival probabilities. Sections 5 and 6 then contain the simulation study and analysis of the SEER

breast cancer data, respectively. Conclusions are given in Section 7.

2 Models, assumptions, and priors

Mimicking the real data, suppose that the observed data are (Vi,∆i, Xi1, . . . , Xip), i = 1, . . . , n. Here

Vi = min(Ti, Ci), the minimum of the survival time Ti and the random censoring time Ci whichever

occurred earlier, for the ith subject. Also, ∆i denotes the censoring indicator ∆i = I(Ti ≤ Ci).

Assume that T and C are independent conditional on the given covariates. For our breast cancer

data C is either the end of the follow-up time which is December 31, 2003 (SEER 1973-2003 Public-

Use CD) or the last time SEER had information about the subject, and X1, · · · , Xp are p factors

that include prognostic and demographic factors.

Model for the residual term: We consider the following linear model

log(Ti) = µi + ei,

µi = ZT
i β,

ei =
√
v(µi)εi,

εi|θi = (θi1, θi2) ∼ Normal(θi1, (
√
θi2)

2),

θi|P ∼ P, a random probability measure,
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P ∼ PN ,

where β is the regression parameter corresponding to Z which comprises of all the main effects

and two factor interactions of (X1, · · · , Xp), and v(µ) is a positive valued function. Note that P

is a random probability measure on (R × R+,B), where B denotes the Borel σ-algebra defined

on R × R+. The stick-breaking prior PN , identified by the precision parameter α and the base

probability measure H(·|ψ), is almost surely a discrete random probability measure. Now

PN(·) =
N∑

k=1

pkδϑk
(·),

where ϑk are i.i.d. random variables from a base probability measure H (the corresponding density is

denoted by h), and pks are random variables chosen to be independent of ϑk such that 0 ≤ pk ≤ 1 and
∑N

k=1 pk = 1, and (p1, · · · , pN) ∼ Dirichlet(α/N, . . . , α/N). When N →∞ the stick-breaking prior

becomes the well-known Dirichlet process prior, usually written as DP (αH). Therefore, sometime

PN is referred to as a finite dimensional Dirichlet process. Here α plays a critical role in the variance

of the random probability measure. On the precision parameter α we shall use a Gamma(aα, bα) prior.

Importantly, a Dirichlet process mixture of normal distributions covers a large class of densities with

finite variance, and the corresponding posterior distribution is weakly consistent for the true density

([18], p. 152).

We would like to point out that Christensen and Johnson [5] used a Dirichlet process prior directly

on the residual term of the linear model of log(T ), and proposed a semi-Bayes approach to make

inference on the regression parameters. On the other hand, we not only deal with the regression

parameters associated with the mean function, but also our variance function varies with the mean

function making it difficult to adopt Christensen and Johnson’s approach in our set-up.

Model for the variance: Suppose that the conditional variance of log(T ) is v(µ), where v is

assumed to be a function of µ known up to a finite dimensional parameter. We shall model v using

a polynomial function of µ, such as vi = vi(µi) = exp(
∑L

l=1 γlµ
l
i), for some L. In particular, vi = 1
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when µi = 0. Here L is assumed to be fixed, and one may apply a model selection technique to

choose an optimal value of L. To facilitate Bayesian computation we use a hierarchical structure,

vi = var{log(Ti)|Zi} = exp(γ1ηi + γ2η
2
i + · · ·+ γLη

L
i ),

ηi = µi + eiη,

eiη ∼ Normal(0, τ 2
η ).

This hierarchical structure helps easy drawing of the β-parameters in the Gibbs sampling. Usually τ 2
η

is chosen to be a very small number. On the unknown parameters γ1, . . . , γL we shall use independent

Normal(mγl
, σ2

γl
), l = 1, . . . , L priors.

Handling large dimension of Z: A large number of parameters may increase predictability of a

model at the cost of large uncertainty. Therefore, to reduce the effective dimension of our model we

shall adopt the idea of penalized regression which will lead to a small group of variables with good

prediction accuracy. In the Bayesian context inferences are based on a model averaging technique.

Although there are numerous approaches to penalize the regression parameters, we shall adopt the

Least Absolute Shrinkage and Selection Operator (LASSO) proposed by Tibshirani [19]. In the

Bayesian context the LASSO estimator is obtained from the linear regression with the Laplace prior

π(β1, · · · , βq) =
∏q

j=1(λ/2) exp(−λ|βj|) on the regression coefficients. Thus the prior for β1, · · · , βq

will be

π(β1, · · · , βq) =

q∏
j=1

λ

2
exp(−λ|βj|),

and the parameter inference will be based on the censored data likelihood and the priors. To facilitate

the computation, following Park and Casella [20] we shall write the Laplace prior as a gamma mixture

of a normal distribution

π(β1, · · · , βq) =

q∏
j=1

λ

2
exp

(
−λ|βj|

)
=

q∏
j=1

∫ ∞

0

1√
2πσ2

j

exp

(
− β2

j

2σ2
j

)
λ2

2
exp(−λ2σ2

j/2)dσ2
j .
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On the lasso parameter λ2 (not on λ) we put the following Gamma(r, δ) prior

π(λ2) =
δr

Γ(r)
(λ2)r−1 exp(−δλ2), r > 0, δ > 0. (1)

3 Posterior computation

When a subject is censored, we assume its actual time-to-event is T ∗i that is an unobserved latent

variable and T ∗i > Vi. Define T ∗ = {T ∗i : ∆i = 0}, γ = (γ1, . . . , γL)T and η = (η1, . . . , ηn)T ,

θ∗ = (θ∗1, . . . , θ
∗
N)T . Then the joint posterior distribution of all the parameters and the latent variables

is

π(β, σ2
1, . . . , σ

2
q , λ

2,γ, p1, . . . , pN ,θ
∗,η, α,T ∗|Data)

∝
n∏

i=1

( N∑

k=1

pkδϑk
(θi) exp

[
− ∆i

2θi2

{
log(Vi)−ZT

i β√
exp(

∑L
l=1 γlηl

i)
− θi1

}2

−(1−∆i)I(T
∗
i > Vi)

2θi2

{
log(T ∗i )−ZT

i β√
exp(

∑L
l=1 γlηl

i)
− θi1

}2]

× 1

θ
1/2
i2

× exp

{
−1

2

r∑

l=1

γlη
l
i −

(ηi −ZT
i β)2

2τ 2
η

− 1

2
log(τ 2

η )

})

×
q∏

j=1

λ2

2
√

2πσ2
j

exp

(
− β2

j

2σ2
j

− λ2σ2
j

2

)
× δr

Γ(r)
(λ2)r−1 exp(−δλ2)

×
L∏

l=1

1√
σ2

γl

exp

{
−(γl −mγl

)2

2σ2
γl

}

× Γ(α)

{Γ(α/N)}N
p

α/N−1
1 × · · · × p

α/N−1
N × αaα−1 exp

(
− α

bα

)
×

N∏
j=1

h(ϑj|ψ).

We shall estimate the parameters via the Gibbs sampling algorithm, where we repeatedly sample

the unknown parameters from their full conditional distributions. In particular, the following 10

steps will be repeated for 20, 000 times for our simulation study and in the data example. Define

Zi(−j) = (Zi1, · · · , Zi(j−1), Zi(j+1), · · · , Ziq), β(−j) = (β1, · · · , β(j−1), · · · , β(j+1), · · · , βq). Define T ∗i =
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Vi for ∆i = 1 and when ∆i = 0 initialize T ∗i by some number larger than Vi. Define φ(a, b, c) =

exp{−(a − b)2/2c}/√2πc and Φ(a) =
∫ a

−∞ φ(u, 0, 1)du. For handling the stick-breaking prior, we

introduce the configuration indicators s = (s1, · · · , sn) that are defined as follows: si = j if θi = ϑj

for 1 ≤ j ≤ N for i = 1, · · · , n. Also, we define the cluster size mj as the number of sis equal to

j. Thus, 0 ≤ mj ≤ n and
∑N

j=1mj = n. For the base probability measure H of ϑj = (ϑj1, ϑj2), we

assume that [ϑj1|ϑj2] ∼ Normal(ψ1, ζϑj2), ϑj2 ∼ IG(ψ2, ψ3), and ζ ∼ IG(ψ4, ψ5). Here we shall assume

that the hyperparameters ψ = (ψ1, . . . , ψ5)
T , mγl

, σ2
γl
, l = 1, . . . , L, δ, r, aα and bα will be specified

by practitioners. We shall use Z to denote the n × q design matrix Z = (Z1, . . . ,Zn)T . Before

we start the MCMC iterations, we initialize β1, . . . , βq, σ
2
1, · · · , σ2

q , λ
2, γl, l = 1, . . . , L, p1, · · · , pN ,

ϑ1, . . . , ϑN , eiη, i = 1, · · · , n, ψ, α. Also, we initialize s by generating random numbers from the

discrete uniform(1, N), and accordingly calculate mj, j = 1, . . . , N . The detailed MCMC steps are

given in the Appendix.

In Steps 4 and 6 given in the Appendix for updating γ and η that require Metropolis step,

we choose the normal proposal with diminishing proposal variance based on the adaptive MCMC

techniques proposed in [21]. This adaptive MCMC helps to achieve a reasonable and recommended

acceptance rate, say πo = 44%, that is required for good mixing. More specifically, suppose that for a

generic variable x, we use normal proposal density with the current value of the variable as the mean

and κ as the variance. In the Markov chain, we treat every B = 50 iterations as a batch. For the

bth batch with B iterations, we check the acceptance rate πb(x) for a generic variable x within that

batch. If πb(x) is greater (smaller) than πo, we then subtract (add) ξ = min{0.01, b−1/2} from (to)

the logarithm of the proposal standard deviation log(κ1/2). It is clear that the small tuning amount

ξ diminishes as the batch number b increases. Finally, based on the MCMC samples we compute the

posterior mean, 95% credible interval for each of the β-parameter, and most importantly estimate

the survival probabilities.
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4 Estimation of survival probabilities

Observe that conditional on Z = Z0, β, γ, and θ = (θ1, θ2)
T ,

pr(T > t0|Z,β,γ, θ) = 1− Φ

(
log(t0)− µ0 −

√
v(µ0, γ)θ1√

v(µ0, γ)θ2

)
,

where v(µ0, γ) = exp(
∑L

l=1 γlµ
l
0) with µ0 = ZT

0 β. Thus, the posterior distribution of this survival

probability obtained by recording (1−∑N
k=1 pjkΦ[{log(t0)−ZT

0 βj−
√
v(ZT βj,γj)ϑ

(j)
k1 }{v(ZT βj,γj)

ϑ
(j)
k2 }−1/2]) for j = 1, · · · ,M , where βj,γj, pjk, ϑ

(j)
k = (ϑ

(j)
k1 , ϑ

(j)
k2 )T , k = 1, · · · , N are the M MCMC

samples from the posterior distribution of the parameters. In particular, note that pjk and ϑ
(j)
k are

coming from Steps 8 and 9 given in the Appendix. The average of these M probabilities is the

estimated posterior mean.

5 Simulation study

Simulation design: In this simulation we assess the small sample performance of our method

and compare it with other approaches. We simulated cohort data with n = 5, 000 by simulating

Z1, · · · , Z20 independently from the Bernoulli(0.5) distribution. However, the mean involves only

Z1, Z2, Z3, and Z4, and write µ = β1Z1 + β2Z2 + β3Z3 + β4Z4 with β1 = β2 = 0.5, β3 = 0.35, and

β4 = −0.35. Next we set T = exp{1 + µ + exp(−0.5µ2)ε} and we take ε = log(ε∗)/
√

var(ε∗), where

ε∗ follows Weibull(k, λ), so that pr(ε∗ > 5) = 0.79 and pr(ε∗ > 10) = 0.66, where 0.79 (0.66) was

the median 5-year (10-year) survival probability across all groups from the SEER data. Note that

pr(ε∗ > r) = exp{(r/λ)k}. Hence we get k = 0.82 and λ = 29.27, and
√

var(ε∗) = 1.57. We set the

censoring variable C = Z1 + Z2 + UC , where UC ∼ Uniform(0, K) distribution, and choose K such

that on average 30% observations are right censored. This simulation design is henceforth referred

as scenario 1.

Method of analyses: We simulated 500 such datasets by repeating the above procedure, and

each data set was analyzed by the three model based methods: 1) the Cox model with the LASSO
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variable selection technique (Cox-LASSO) 2) the parametric AFT model with generalized F distri-

bution for the residual, and 3) the proposed method referred to as AFT-Bayes-LASSO estimator.

Also, the Kaplan-Meier method was applied to each group separately to estimate survival proba-

bilities. The Cox-LASSO approach was implemented using R package glmnet [22], and there we

obtained the LASSO-parameter λ by performing the 10-fold cross validation for variable selection.

We implemented the parametric AFT model using R package flexsurv [23] which adopts a flexible

regression approach for survival models. Following a referee’s suggestion we considered a generalized

F distribution for the parametric AFT model that allowed more flexibility in capturing different

patterns of the survival time. Since flexsurv does not conduct any variable selection, we harness

the existing functions for flexible regression with the classical variable selection procedures: forward

selection and backward elimination. For each of the 2 stepwise procedures, we further considered 3

frequently used criteria: AIC, BIC, and p-value with the commonly adopted threshold of 0.05 for

inclusion or exclusion.

For the proposed method, we took N = 150 which yields L1 distance in a Dirichlet process

approximation error 2.29 × 10−9 (∼ 4n exp{−(N − 1)/α}) for n = 5, 000 and α = 5 [24]. In the

simulation and in the real data analysis, the variance was modeled as a quadratic function of the

mean (i.e., L = 2), and set the hyperparameters r = 0.01 and δ = 0.01 involved in (1), so that the

prior mean and variance of λ2 are 1 and 100, respectively. Also, we set τ 2
η = 0.001, aα = bα = 1,

and initialize ζ = 1. For the hyperparameters we set ψ1 = 0, ψ2 = ψ4 = 2.5, ψ3 = ψ5 = 1 that

result in a quite flexible base probability model under the finite-dimensional Dirichlet process. For

each simulated data set, we ran 3 MCMC chains, each with M = 20, 000 iterations. To compute one

chain on a 2.66GHz Oct-core Intel Xeon E7-8837 processor it required approximately 44 minutes.

The convergence was concluded after a burn-in period of 15, 000. We then sampled at every 10th

iteration to form the posterior samples with total size 1, 500 (500 posterior samples from each of

three chains) for posterior inference. In the end, we recorded the average of the posterior means, the
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standard deviation of the posterior means for each of the β-parameters, and the 95% credible interval

for each parameter– based on which we declare if a variable is statistically significant or not.

Results: The performance of the aforementioned methods are shown in Figure 1, which visualizes

the number of false positives (i.e., the number of significant βs that are actually null) and false

negatives (i.e., the number of non-significant β that are actually non-null) using box-plots. The results

indicate that the Cox-LASSO approach tends to select more variables and hence gives high proportion

of false positives. A possible reason might be that in the simulation study we have generated data

according to an AFT structure, instead of using a proportional hazard model structure.

Although a generalized F distribution has some flexibility in distribution assumptions, we found its

implementation in R software can suffer a high chance of failure either in optimization of the likelihood

functions, or in the computation of the Hessian matrix, for the p-value based variable selection

procedures. We found the computational issue became more severe as the percentage of the censoring

cases increased, even when we used some reasonable initialization of the parameters by fitting reduced

models (with less number of parameters). The p-value based forward selection (GenF-f-pval) turns

out to outperform other variants of the parametric AFT model with the stepwise selection procedures.

In general, these procedures suffer from high rates of false negatives for backward elimination, and

high rates of false positives for forward selection.

Overall, the proposed method outperforms others when jointly considering the false negatives

and false positives. Figure 1 indicates that the proposed method detects variables with significant or

trivial effects, with relatively smaller rates for both false positives (4.4%) and false negatives (0%).

Additionally, in Figure 2 we show the proportion of times each β-parameter is significantly different

from zero in the proposed method.

For the sake of comparison, among several classes, we considered four classes (Z1 = Z2 = Z3 =

1, Z4 = 0), (Z1 = Z3 = Z4 = 1, Z2 = 0), (Z1 = Z2 = Z3 = Z4 = 1), and (Z1 = Z2 = Z3 = 0, Z4 = 1).

Under our choice of (β1, β2, β3, β4) = (0.5, 0.5, 0.35,−0.35), the first class has the highest average
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survival rate, in particular near the starting period, while the last class, in contrast, has the smallest

mean survival rate. The other two classes are intermediate groups. For these classes we estimate the

survival probability and 95% confidence bands based on the 500 simulations. They are presented in

Figure 3 along with the true survival probabilities. The Kaplan Meier estimator fitted for each group

can capture the true survival curve quite well with a higher level of uncertainty. In contrast, the

proposed method allows information sharing across the groups resulting in a lower level of uncertainty

(i.e., much narrower confidence bands) in the estimator. Notably, both the Cox-LASSO and the

parametric AFT with generalized F distribution significantly deviate from the true survival curve,

in particular for the extreme groups, (Z1 = Z2 = Z3 = 1, Z4 = 0) and (Z1 = Z2 = Z3 = 0, Z4 = 1).

The results suggest that the proposed method can recover well the underlying survival probabilities

given a large proportion of censored cases, and has a better performance compared to the commonly

adopted methods.

We also conducted another simulation study (henceforth referred as scenario 2) with the following

design. We simulated Zj’s in the same way as the previous scenario, but took β1 = β2 = 0.2,

β3 = −β4 = 0.1, and T = exp{1+µ+exp(0.5+µ2)ε}, C = Z1 +Z2 +UC , UC ∼ Uniform(0, K), where

K is chosen so that the data contain a high proportion (50%) of right censored cases. This scenario

has more censored subjects, and unlike the previous scenario, this study has very low signal-to-

noise ratio (i.e., µ/ exp(0.5 + µ2) is low). We provide box-plots of false positives and false negatives

in Figure 4. The proposed method again outperforms other competitors in selecting important

variables with relatively smaller rates for both false positives and false negatives, which are 3.2% and

0.6%, respectively. Also, Figure 5 shows the proportion of times each β-parameter is significantly

different from zero in the proposed method. Finally, the estimated survival probabilities for the

four aforementioned classes are given in Figure 6. The proposed method consistently provides more

accurate estimates with narrower confidence bands that cover the true survival curves compared to

the competing methods. The Cox-LASSO and the parametric AFT model also provide accurate
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estimates under scenario 2 where the simulated cases have generally higher survival rates. However,

they both deviate from the true curve for the risky group (bottom-right panel). Overall, the proposed

method shows very robust performance towards a large proportion of censored cases and a low signal-

to-noise situation in extracting effective predictors and estimating the survival probabilities. For both

scenarios we estimate the bias and root mean squared error of the regression parameter estimators

under the three model based approaches. They are presented in Tables 1 and 2 of the supplementary

materials. The results in Table 1 indicate a negligible bias for all 20 estimators in the proposed

method. Although the results in Table 2, where the signal-to-noise ratio is small, show somewhat

larger bias for the non-zero coefficients in the proposed method, the performance of the proposed

method is again much better than the other approaches.

6 Analysis of the SEER breast cancer data

Data overview: We analyzed the survival time of female breast cancer patients using the SEER

public use data (SEER 1973-2003 Public-Use CD). Following somewhat similar criteria as [2], we

considered only the subjects identified through autopsy and death certificate, while excluding: 1)

male breast cancer subjects; 2) the subjects for whom the breast cancer was not primary; 3) the

subjects with unknown race and race other than Black and White, 4) the subjects with unknown

survival time; 5) the subjects with an age at diagnosis less than 20 years; 6) the subjects with no

microscopic confirmation and sarcomas; 7) the subjects with unknown grade; 8) the subjects with

unknown stage; 9) the subjects with unknown ER status; and 10) the subjects with unknown PR

status. Moreover, we considered subjects who were diagnosed between January 1, 1990 and December

31, 2000, because for breast cancer patients, ER and PR status information is only available from

January 1, 1990.

The predictor variables consisted of four prognostic factors: stage with 6 categories, I, IIA, IIB,

IIIA, IIIB, IV (we excluded stage 0 as there was only one such case following the preprocessing rule);
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grade with 4 categories 1, 2, 3, 4; ER status with 2 categories, positive and negative; PR status with

2 categories positive and negative; and two demographic factors: race with 2 categories, Black and

White; and age at diagnosis with 7 categories, 20-29, 30-39, 40-49, 50-59, 60-69, 70-84, 85 years

and onwards. Thus, the main effects and two-factor interactions lead to 6 +
(
6
2

)
= 6 + 15 = 21

factors. Since all 6 factors are categorical variables, the number of regression parameters (number of

components of β) involved in the mean function is much larger than 21, and it is

q = 5 + 3 + 1 + 1 + 1 + 6︸ ︷︷ ︸
main effects

+ 5(3 + 1 + 1 + 1 + 6) + 3(1 + 1 + 1 + 6) + 1(1 + 1 + 6) + 1(1 + 6) + 1(6)︸ ︷︷ ︸
two factor interactions

= 125.

This large dimension of Z clearly indicates the necessity of a variable selection method.

After the aforementioned exclusion from the original 224, 444 female subjects who were diagnosed

with breast cancer during 1990–2000 our analyzed data set included n = 92, 147 subjects. Our model

includes q = 125 regression parameters from p = 6 factors. Define the survival time T as the time

to death from the time of diagnosis calculated in months. The latest time of diagnosis, i.e., the last

month for samples entering the study, was December, 2000. However, we observed V which is the

time of death, date last known to be alive, or follow-up cutoff date (12/31/2003) whichever occurred

first from the date of diagnosis. We present the 5-year survival statistics: approximately 20% of

subjects died within 5 years, and 59% of subjects survived at least 5 years; the remaining 21% of

subjects were censored within 5 years from the time of diagnosis. We also report the 10-year survival

statistics: about 28.2% of subjects died within 10 years, 14.8% of subjects survived 10 years; and the

remaining 57% of subjects were censored within 10 years from the time of diagnosis.

The age group 70-84 years had the smallest proportion of censored cases. One of the goals of

the analysis is to estimate the survival probabilities for each group defined by the prognostic and

demographic factors, and also identify important predictors of survival time.

Method of analyses: For the proposed method (AFT-Bayes-LASSO), we used the same priors
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that were used in the simulation study. Additionally, to assess the necessity of the variance mod-

eling, we re-analyzed the data by setting γ1 = γ2 = 0 while everything else was the same as the

previous analysis. We label this special case as no variance modeling, AFT-Bayes-LASSO (noVar).

Furthermore, we analyzed the data using the Cox-LASSO approach, and the parametric AFT model

with generalized F distribution. For the parametric AFT model we adopted a p-value based forward-

selection method (GenF-f-pval) that outperformed the other stepwise variable selection techniques

in our simulation study. Additionally, we estimated survival probabilities using the Kaplan-Meier

method for each group separately.

The R package glmnet for the Cox-LASSO approach does not produce a standard error of the

estimator. Therefore, for the sake of comparison, we used a bootstrap resampling method (with 500

bootstrap samples) to compute the standard error of the parameters and 95% pointwise confidence

intervals for the survival probabilities. Note that each bootstrap sample may result in different sets

of selected variables, and not-selected variables are set to zero. In calculating standard errors we

included both zero and non-zero estimates.

Results and discussions: Figure 7 shows the posterior mean and 95% credible interval of the

parameters under the proposed method. Compared to the AFT-Bayes-LASSO (noVar) approach

where γ1 = γ2 = 0, AFT-Bayes-LASSO yielded much narrower credible intervals for the parame-

ters. We also obtained the following posterior mean (95% credible interval) for the γ-parameters,

γ̂1 = 0.08(0.06, 0.11), γ̂2 = 0.20(0.17, 0.21) for the AFT-Bayes-LASSO method. This result clearly

indicates γ1 and γ2 are statistically significantly different from 0. Secondly, we calculated the Bayes

factor to compare the two nested model fits. The Bayes factor with a hugely large value favored the

model where the variance was modeled as a function of the mean. These facts support the necessity

of variance modeling. For the Cox-LASSO and GenF-f-pval methods, we only show those selected

βj’s with 95% confidence bands.

Figure 7 shows that, out of the 125 βj’s, 71 (56.8%) were significant under our proposed AFT-
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Bayes-LASSO approach. This is similar to the output from GenF-f-pval, which selected 63 (50.4%)

βj’s. On the other hand, Cox-LASSO selected as many as 110 (88%) βj’s, which may not be quite

sensible. This also echoes with our simulation results that Cox-LASSO has a higher rate of false

positives. Although the signs of the main effect estimates were somewhat consistent across the

methods, occasionally, for some of the interaction terms, the signs of the three estimates varied

across the methods. We found that GenF-f-pval generally agrees with AFT-Bayes-LASSO (noVar)

due to the fact that they are both AFT models, one with a parametric model for the residual and

the other with a nonparametric model for the residual. Many βj’s turned out to be statistically

significant under Cox-LASSO, especially some interaction terms between the stage and age groups

that are largely non-significant in the other approaches. For the sake of completeness, in Table 3

of the supplementary materials, we provide the estimate and credible/confidence interval for each of

125 regression parameters under the different methods. Finally, in light of the simulation results, the

parameter estimates under our AFT-Bayes-LASSO deemed to be more trustworthy.

It took more than a week to analyze the data with the GenF-f-pval method. The computing time

for the Cox-LASSO method strongly depends on the specified convergence threshold for coordinate

descent and the penalty parameter. Although the default convergence threshold 10−7 did not work,

a larger threshold of 10−4 worked and returned the model parameter estimates within an hour.

Standard errors were calculated separately using a bootstrap method. For AFT-Bayes-LASSO, it

took around 10 hours for each of the MCMC runs that proceed in parallel, to obtain the full results

for the Bayesian inference.

Next, we compared the results under different approaches in estimating the survival probabilities

for individual groups. Although the maximally observed survival time was 167 months (from January

1990 to December 2003) the whole study period, we hereby present survival curves up to 10 years

(120 months) for each group (the National Cancer Institute only attempts to estimate 5-year survival

probability).
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There were 6 × 4 × 2 × 2 × 2 × 7 = 1, 344 possible cross-classified groups (unique value of the

vector Zi) for the 6 factors. Out of the 1, 344 possible groups, 304 groups were empty without any

subjects. However, our proposed method like any model based approach, allows for estimating the

survival probabilities for all the 1,344 groups due to information sharing across all groups. Both the

sample size and percentage of censored cases within 10 years can vary significantly across groups. We

demonstrate our model’s capability of estimating survival probabilities using several representative

groups as shown in Figure 8, where we again compare our method with the other approaches.

The first row (call Type-A) includes the groups with a large number of cases and a high proportion

of censored cases. These groups also have higher survival probabilities. The second row (referred

to as Type-B) consists of the groups that have moderate sample sizes and percentages of censoring

cases. The third row contains the groups with small sample size: the first two are risky groups with

rather small survival rates, while the last two have higher censoring percentages and survival rates.

We call the first two as “Type-C” groups which represent high risk groups, and call the last two

together with the 4 groups in the last row, as “Type-D” groups, which have a small sample size but

relatively higher survival rates than Type-C groups. Figure 8 indicates that for Type-A, B, D groups,

the estimates based on the 3 model-based approaches generally agree and have narrower confidence

bands than the Kaplan-Meier estimators, which have a high uncertainty under fewer observations.

Nevertheless, for the risky Type-C group, the Cox-LASSO approach provides estimated curves that

largely deviate from the other estimates. On the other hand, for Type-C, the survival estimates under

the GenF-f-pval approach are somewhat smaller than the other estimates. Our AFT-Bayes-LASSO

approach does not show any such pattern.

Finally, in Table 2, we present the estimated 5-year (t0 = 60 months) survival probabilities along

with the 95% credible intervals for several representative groups. Table 4 of the supplementary

materials contains the estimated survival probabilities along with the 95% credible intervals for all

1, 344 groups.
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7 Conclusions

We developed a flexible Bayesian method for variable selection in the AFT model. We applied it to

analyzing SEER breast cancer data that enables the estimation of 5-year survival probabilities for

different groups defined by levels of the prognostic factors. To the best of our knowledge, this is the

first comprehensive analysis of SEER data which accounts for all recorded prognostic factors in the

estimation of survival probabilities. The proposed method can also be applied to analyze a recent

version of the SEER data where one may encounter a higher percentage of censoring. Although a

higher percentage of censoring likely to result in a loss of efficiency, the relative performance of the

methods expected to be the same based on our simulation results for the 50% censoring case.

We considered a linear regression model for the logarithm of the survival time. The residual

term of the linear model is flexibly modeled as an approximate Dirichlet process mixture of normal

distributions. Furthermore, the variance was modeled as a function of the mean. A variable selection

technique has been employed in the mean function using LASSO. All these components make the

approach very flexible. The use of the Bayesian method allowed us to estimate the parameters in

this complex and flexible model. Simulation results indicated that the method worked quite well in

estimating survival probabilities, and identifying important variables that are significantly associated

with the time to event. The methods work when the signal-to-noise ratio is small and the percentage

of censored cases is relatively high.

The proposed model allowed the joint estimation of the main effects with importance by borrowing

information across all the groups according to different levels of the prognostic factors. Thereby for the

real data, it allowed us to estimate the survival probabilities for groups even with few observations.

Hence we were able to 1) estimate the survival probabilities for all the groups introduced by the

prognostic factors and 2) provide the corresponding credible intervals as a measure of uncertainty.

The extensive and realistic simulation study indicates very good performance of the proposed
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approach even when the sample size was close to 100, 000. The computer code in MATLAB and

R for our approach and the parametric AFT model with the stepwise selection procedure will be

publicly available through our website.
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Appendix: Details of the MCMC steps

Step 1. Sample β from a multivariate Normal distribution with variance and mean

Σ† =

{
Z̃

T
Z̃ + Λ0

}−1

,

µ† = Σ†ZTµ0

where Z̃ is the n × q scaled design matrix with its ith row equal to the ith row of Z multiplied by

{(viθi2)
−1 + τ−2

η }1/2, Λ0 is a q × q diagonal matrix with the jth diagonal entry σ−2
j for 1 ≤ j ≤ q,

µ0 is an n × 1 matrix with the ith entry (viθi2)
−1{log(T ∗i ) − √

viθi1} + τ−2
η ηi for 1 ≤ i ≤ n. In

this case, β can be efficiently sampled by evaluating the Cholesky decomposition of the precision

matrix Z̃
T
Z̃ + Λ0 = AAT , which follows that Σ† = (A−1)TA−1, and a desired sample has the form

(A−1)TZ0 + µ† = (A−1)T (Z0 +A−1ZTµ0) where Z0 is a q-variate standard normal random variable,

hence the sampling procedure involves solving two linear triangular systems:

• solve Ax0 = ZTµ0 for x0, and

• solve AT β = (Z0 + x0) for β

which yields a desired sample β.

Step 2. Define uj = 1/σ2
j , then sample uj from the inverse-Gaussian distribution

π(uj|rest) ∝ 1

u
3/2
j

exp

{
−λ2 (uj − |λ/βj|)2

2uj|λ/βj|2
}
, j = 1, · · · , q.

Step 3. Sample λ2 from

π(λ2|rest) ∝ (λ2)r+q−1 exp{−(δ +

q∑
j=1

σ2
j

2
)λ2}.

Step 4. Sample γl from the following conditional distribution

π(γl|rest) ∝ exp

[
−1

2

n∑
i=1

1

θi2

{
log(T ∗i )−ZT

i β√
exp(

∑L
l=1 γlηl

i)
− θi1

}2

−1

2

n∑
i=1

L∑

l=1

γlη
l
i −

(γl −mγl)
2

2σ2
γl

]
,
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for l = 1, . . . , L. For this step we shall adopt the Metropolis-Hastings algorithm.

Step 5. When ∆i = 0 following Gelfand et al. [25] we resample T ∗i as

log(T ∗i ) = ZT
i β +

√
viθi1 +

√
viθi2Φ

−1

{
(1−R)Φ

(
log(Vi)−ZT

i β −√viθi1√
viθi2

)
+R

}
,

where R ∼ Uniform(0, 1), and Φ and Φ−1 are the CDF and the inverse of the CDF of the standard

normal distribution, respectively.

Step 6. Sample ηi from the following conditional distribution

π(ηi|rest) ∝ exp

[
− 1

2θi2

{
log(T ∗i )−ZT

i β√
exp(

∑L
l=1 γlηl

i)
− θi1

}2

−1

2

L∑

l=1

γlη
l
i −

(ηi −ZT
i β)2

2τ 2
η

]
, for i = 1, . . . , n.

Step 7. Sample the configuration indicators as follows. Sample si from π(si|rest) ∼ Multinomial(p∗i1, . . .

, p∗iN), where (p∗i1, · · · , p∗iN) = K(p1φ[{log(T ∗i )−ZT
i β−√viϑ11}, 0, viϑ12], · · · , pNφ[{log(T ∗i )−ZT

i β−
√
viϑN1}, 0, viϑN2]), where K is a normalizing constant. If the new proposal of si is j, update

msi
= msi

− 1, mj = mj + 1, si = j, θi = ϑj.

Step 8. Sample (p1, · · · , pN) from its conditional distribution, Dirichlet(α/N +m1, · · · , α/N +mN).

Step 9. Update ϑ1, . . . , ϑN as follows. If mj > 0, sample ϑj from

π(ϑj|rest) ∝ h(ϑj|ψ)
∏

i:si=j

1√
vi

φ[{log(T ∗i )−ZT
i β −√viϑj1), 0, viϑj2]

otherwise ϑj ∼ H(ϑj|ψ) for j = 1, · · · , N . In particular, when mj > 0, sample ϑj1 from the Normal

distribution with variance and mean

σ2
ϑ =

(
1

ζϑj2

+
mj

ϑj2

)−1

,

µϑ = σ2
ϑ

(
ψ1

ζϑj2

+
∑

i:si=j

log(T ∗i )−ZT
i β√

viϑj2

)
,

respectively, and sample ϑj2 from the Inverse-Gamma distribution with shape and scale

aϑ =

(
ψ2 +

1

2
+
mj

2

)
,
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bϑ =

[
1

ψ3

+
(ϑj1 − ψ1)

2

2ζ
+

∑
i:si=j

{log(T ∗i )−ZT
i β −√viϑj1}2

2vi

]−1

,

respectively. Finally, sample ζ from the Inverse-Gamma distribution with shape and scale

aζ = ψ4 + 0.5
N∑

j=1

I(mj > 0),

bζ =

{ ∑
j:mj>0

(ϑj1 − ψ1)
2

2ϑj2

+
1

ψ5

}−1

,

respectively.

Step 10. Since the prior of α is Gamma(aα, bα), we sample α from

π(α|rest) ∝ Γ(α)

{Γ(α/N)}N
p

α/N−1
1 · · · pα/N−1

N αaα−1 exp(−α/bα).

To draw α we use a Metropolis-Hastings algorithm with π(α), the prior density as the proposal

density. Suppose that at the (t+ 1)th iteration we draw α(new) from π(α), then

α(t+1) =

{
α(new) with probability ρ(α(new), α(t))
α(t) otherwise.

,

where

ρ(α(new), α(t)) = min

{
1,
p

α(new)/N−1
1 × · · · × p

α(new)/N−1
N Γ(α(new))/{Γ(α(new)/N)}N

p
α(t)/N−1
1 × · · · × p

α(t)/N−1
N Γ(α(t))/{Γ(α(t)/N)}N

}
.
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Table 1: Estimates of the statistically significant β param-
eters along with the 95% credible intervals. Stage IV, grade
3, ER positive, PR positive, White race, and age group of
diagnosis 70 to 84 years were used as the reference category
of the respective variables.

Variable Estimate 95% credible interval
Lower Upper

Stage I 1.099 1.045 1.149
Stage IIA 0.935 0.880 0.990
Stage IIB 0.770 0.683 0.836
Stage IIIA 0.599 0.504 0.686
Stage IIIB 0.486 0.388 0.587
Grade 1 0.125 0.022 0.260
Grade 2 −0.067 −0.116 −0.011
Grade 4 −0.276 −0.385 −0.173
ER– −0.737 −0.831 −0.663
PR– −0.325 −0.389 −0.247
Black race −0.416 −0.494 −0.316
Age of diag. 20–29 0.281 0.018 0.465
Age of diag. 30–39 0.560 0.376 0.723
Age of diag. 40–49 0.505 0.417 0.591
Age of diag. 50–59 0.359 0.277 0.422
Age of diag. 60–69 0.063 0.011 0.127
Age of diag. 85+ −0.845 −0.930 −0.688
Stage IIB × Grade 1 0.208 0.065 0.302
Stage IIIA × Grade 1 0.225 0.057 0.356
Stage I × Grade 2 0.146 0.074 0.200
Stage IIA × Grade 2 0.149 0.088 0.205
Stage IIB × Grade 2 0.197 0.125 0.260
Stage IIIA × Grade 2 0.218 0.120 0.276
Stage IIIB × Grade 2 0.211 0.132 0.304
Stage I × Grade 4 0.341 0.210 0.469
Stage IIA × Grade 4 0.262 0.145 0.411
Stage IIB × Grade 4 0.279 0.115 0.463
Stage IIIA × Grade 4 0.299 0.168 0.502
Stage IIIB × Grade 4 0.254 0.112 0.397
Stage I × ER– 0.658 0.585 0.777
Stage IIA × ER– 0.612 0.527 0.730
Stage IIB × ER– 0.566 0.494 0.660
Stage IIIA × ER– 0.519 0.374 0.645

Continued on the next page
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Table 1 – continued from the previous page
Variable Estimate 95% credible interval

Lower Upper
Stage IIIB × ER– 0.474 0.353 0.590
Stage I × PR– 0.283 0.202 0.356
Stage IIA × PR– 0.229 0.140 0.321
Stage IIB × PR– 0.194 0.102 0.280
Stage IIIA × PR– 0.157 0.052 0.269
Stage IIIB × PR– 0.157 0.050 0.292
Stage I × Black race 0.345 0.244 0.411
Stage IIA × Black race 0.324 0.191 0.401
Stage IIB × Black race 0.318 0.229 0.405
Stage IIIA × Black race 0.255 0.110 0.380
Stage IIIB × Black race 0.181 0.111 0.300
Stage IIIB × Age of diag. 40–49 −0.212 −0.311 −0.054
Stage I × Age of diag. 50–59 0.133 0.047 0.201
Stage I × Age of diag. 60–69 0.304 0.218 0.355
Stage IIA × Age of diag. 60–69 0.283 0.170 0.359
Stage IIB × Age of diag. 60–69 0.204 0.105 0.254
Stage IIIA × Age of diag. 60–69 0.263 0.170 0.378
Stage IIIB × Age of diag. 60–69 0.131 0.049 0.216
Stage I × Age of diag. 85+ 0.278 0.144 0.421
Stage IIA × Age of diag. 85+ 0.263 0.112 0.384
Stage IIB × Age of diag. 85+ 0.280 0.077 0.405
Stage IIIA × Age of diag. 85+ 0.350 0.135 0.520
Stage IIIB × Age of diag. 85+ 0.304 0.112 0.459
Grade 2 × PR– −0.024 −0.052 −0.004
Grade 1 × Age of diag. 20–29 0.438 0.180 0.700
Grade 1 × Age of diag. 30–39 0.144 0.032 0.252
Grade 4 × Age of diag. 30–39 −0.071 −0.145 −0.003
Grade 1 × Age of diag. 40–49 0.169 0.124 0.230
Grade 2 × Age of diag. 40–49 0.065 0.039 0.111
Grade 1 × Age of diag. 50–59 0.061 0.029 0.097
Grade 2 × Age of diag. 50–59 0.064 0.036 0.091
ER– × PR– 0.041 0.014 0.074
ER– × Age of diag. 40–49 −0.049 −0.106 −0.009
ER– × Age of diag. 60–69 −0.026 −0.049 0.000
PR– × Age of diag. 20–29 0.164 0.044 0.296
PR– × Age of diag. 60–69 0.026 0.002 0.068
Black race × Age of diag. 40–49 −0.054 −0.086 −0.009
Black race × Age of diag. 60–69 −0.102 −0.173 −0.019
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Table 2: Estimated 5 year survival probabilities along with the 95% credible intervals for some
combination of prognostic factors and for all age groups for the diagnosis.

Stage Grade ER PR Race Age of diagnosis
20-29 30-39 40-49 50-59 60-69 70-84 85+
0.956 0.960 0.964 0.950 0.919 0.819 0.553

I 1 + + W (0.933 (0.947 (0.961 (0.947 (0.914 (0.811 (0.529
0.979) 0.969) 0.968) 0.953) 0.924) 0.828) 0.575)
0.947 0.945 0.949 0.930 0.874 0.784 0.500

I 1 + + B (0.910 (0.930 (0.940 (0.923 (0.852 (0.760 (0.438
0.977) 0.959) 0.957) 0.940) 0.893) 0.809) 0.552)
0.831 0.937 0.948 0.944 0.917 0.800 0.497

I 2 + + W (0.778 (0.932 (0.944 (0.940 (0.912 (0.793 (0.475
0.885) 0.942) 0.951) 0.947) 0.922) 0.808) 0.514)
0.808 0.914 0.928 0.923 0.873 0.767 0.450

I 2 + + B (0.733 (0.904 (0.919 (0.912 (0.855 (0.749 (0.381
0.882) 0.925) 0.935) 0.935) 0.890) 0.790) 0.523)
0.839 0.923 0.926 0.920 0.893 0.767 0.469

I 3 + + W (0.794 (0.913 (0.921 (0.914 (0.887 (0.754 (0.431
0.889) 0.932) 0.930) 0.926) 0.900) 0.779) 0.518)
0.821 0.898 0.900 0.895 0.842 0.735 0.428

I 3 + + B (0.750 (0.880 (0.888 (0.881 (0.822 (0.708 (0.353
0.880) 0.911) 0.911) 0.907) 0.865) 0.757) 0.517)
0.822 0.895 0.929 0.908 0.873 0.730 0.401

IIA 2 + + W (0.724 (0.886 (0.924 (0.903 (0.867 (0.713 (0.383
0.889) 0.903) 0.932) 0.913) 0.881) 0.743) 0.417)
0.789 0.853 0.897 0.871 0.804 0.680 0.349

IIA 2 + + B (0.663 (0.834 (0.885 (0.856 (0.771 (0.657 (0.296
0.880) 0.871) 0.909) 0.891) 0.834) 0.707) 0.419)
0.740 0.840 0.879 0.861 0.807 0.671 0.352

IIB 2 + + W (0.647 (0.826 (0.871 (0.847 (0.797 (0.655 (0.320
0.840) 0.855) 0.887) 0.870) 0.818) 0.689) 0.402)
0.698 0.781 0.828 0.808 0.715 0.614 0.302

IIB 2 + + B (0.561 (0.756 (0.795 (0.786 (0.669 (0.557 (0.238
0.790) 0.810) 0.846) 0.834) 0.757) 0.654) 0.382)
0.727 0.791 0.815 0.791 0.739 0.601 0.305

IIB 3 + + W (0.635 (0.768 (0.800 (0.771 (0.721 (0.573 (0.280
0.817) 0.811) 0.827) 0.816) 0.757) 0.626) 0.329)
0.689 0.726 0.752 0.728 0.637 0.546 0.263

IIB 3 + + B (0.592 (0.698 (0.703 (0.684 (0.596 (0.479 (0.207
0.781) 0.751) 0.773) 0.751) 0.684) 0.578) 0.312)
0.273 0.448 0.453 0.377 0.234 0.204 0.076

IV 2 + + W (0.167 (0.371 (0.412 (0.334 (0.208 (0.183 (0.063
0.399) 0.510) 0.491) 0.426) 0.255) 0.222) 0.089)
0.151 0.235 0.235 0.192 0.112 0.113 0.075

IV 2 + + B (0.097 (0.182 (0.194 (0.159 (0.095 (0.097 (0.059
0.209) 0.300) 0.278) 0.224) 0.126) 0.130) 0.091)
0.342 0.484 0.454 0.378 0.248 0.225 0.081

IV 3 + + W (0.219 (0.406 (0.424 (0.350 (0.223 (0.208 (0.066
0.440) 0.558) 0.495) 0.414) 0.269) 0.244) 0.096)
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Figure 1: Box plot of false positives and false negatives based on 500 simulations under scenario 1.
Here GenF-f and GenF-b stand for the parametric AFT model with generalized F distribution with
the forward selection and backward elimination procedure, respectively, and pval, AIC, and BIC refer
to the criteria measure used for the variable selection.
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Figure 2: Bar diagram of the proportion of times each β parameter came out to significant based
on 500 simulations under scenario 1.
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Figure 3: The average of the estimated survival probability, 95% pointwise credible interval based on
the simulation study and the true survival probabilities under scenario 1 with 30% censoring cases.
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Figure 4: Box plot of false positives and false negatives based on 500 simulations under scenario 2.
Here GenF-f and GenF-b stand for the parametric AFT model with generalized F distribution with
the forward selection and backward elimination procedure, respectively, and pval, AIC, and BIC refer
to the criteria measure used for the variable selection.
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Figure 5: Bar diagram of the proportion of times each β parameter came out to significant based
on 500 simulations under scenario 2.
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Figure 6: The average of the estimated survival probability, 95% pointwise credible interval based on
the simulation study and the true survival probabilities under scenario 2 with 50% censoring cases.
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Figure 7: Plot of the estimate and 95% confidence/credible interval for q = 125 βj parameters for
the real data. 34
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Figure 8: Estimated 10-year survival probabilities along with the 95% confidence/credible interval.
The header of each group (panel) contains Stage, Grade, ER status, PR status, Race, Age group
(Total number of cases, Percentage of censored cases within 10 years).
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