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Abstract

We propose a consistent method for estimating both the finite and infinite dimensional

parameters of the proportional odds model when a covariate is subject to measurement error

and time-to-events are subject to right censoring. The proposed method does not rely on the

distributional assumption of the true covariate which is not observed in the data. In addition,

the proposed estimator does not require the measurement error to be normally distributed or

to have any other specific distribution, and we do not attempt to assess the error distribution.

Instead, we construct martingale based estimators through inversion, using only the moment

properties of the error distribution, estimable from multiple erroneous measurements of the

true covariate. The theoretical properties of the estimators are established and the finite

sample performance is demonstrated via simulations. We illustrate the usefulness of the

method by analyzing a dataset from a clinical study on AIDS.
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1 Introduction

We consider the proportional odds model when the time to event is subject to right censoring

and a covariate is measured with errors. Proportional odds model is a widely used model

in survival analysis as an alternative to the popular Cox proportional hazard model. In

comparison with the Cox model which assumes that the ratio of the hazards corresponding to

different covariate values does not change with time, the proportional odds model allows the

hazard ratio to vary over time. Time varying hazards ratios can arise frequently in practice.

For example, the relative effect of the stages of a cancer at the time of diagnosis on survival

may change with time. In studying the proportional odds model with right censored data,

Murphy, Rossini and van der Vaart (1997) proposed a nonparametric maximum likelihood

estimator. Huang (1995) and Rossini and Tsiatis (1996) constructed consistent estimators

for current status data. Cheng, Wei and Ying (1995) used an estimating equation based

approach in the linear transformation model, which includes the proportional odds model as

a special case, for right censored data.

Despite of the large literature in proportional odds model when covariates are measured

precisely, relatively few works are available in this model when covariates are measured with

errors. Cheng and Wang (2001) considered the measurement error issue in the linear trans-

formation model, but their method requires a parametric model for the pairwise difference

between the true covariate values of any two subjects, a parametric model for the pairwise

difference between the measurement errors of any two subjects, and similar supports of the

censoring distribution and the time-to-event distribution. Thus, the method would fail to

produce consistent estimators if any of three model assumptions is violated. For current

status data, Wen and Chen (2012) proposed a conditional score method for handling errors

in covariate in proportional odds models under the assumption that the measurement errors

follow a normal distribution. This is in stark contrast with the situation in the Cox model,

where extensive studies of errors in covariate have been conducted, see for example Prentice

(1982), Nakamura (1992), Huang and Wang (2000), Zhou and Wang (2000), Hu and Lin

(2002) and Zucker (2005).
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In this article, we propose a semiparametric method to treat errors in covariates in the

proportional odds model when the events are subject to right censoring. We first construct

a class of estimating equations through designing special martingale integrals under the er-

ror free case. The design of the estimating equation class further allows us to invert these

estimating equations when covariates are measured with errors. This type of treatment to

measurement error models is commonly known as the “corrected score” approach. Despite

of the name, the technique is applicable to general estimating functions that are not nec-

essarily score functions in the error-free cases (Nakamura 1990). For example, Huang and

Wang (2001) applied this approach to the logistic regression model. Buzas (1998) used this

approach to correct the partial likelihood score to estimate regression parameters in the Cox

proportional hazard model while assuming the measurement errors follow a normal distribu-

tion. Huang and Wang (2000) further relaxed the normality assumption on the measurement

errors. Using an empirical process approach, they obtained a consistent and asymptotically

normal estimator while the measurement errors are assumed to satisfy some minor regular-

ity conditions. Song and Huang (2005) further refined the parametric and nonparametric

corrected score method of Huang and Wang (2000) to achieve better finite sample proper-

ties. Although all these methods are based on the general idea of “corrected scores”, the

implementation of the idea in different models requires very different model specific treat-

ment and techniques that can be difficult and by no means straightforward. In addition, the

theoretical properties in different models can also be quite different and need to be studied

individually and can be challenging depending on the specificity of the models. This also

applies to the new method proposed in this article. In other words, the distinction between

our work and the work of Huang and Wang (2000, 2001) is rooted in the different models

that are considered in these works. Their subsequent estimation procedure, methodological

development, theoretical properties and numerical implementation are in turn all different

from ours.

One advantage of the proposed method is that we do not make any assumption on the

distribution of the errors other than symmetry, and we do not make any distributional as-
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sumptions on the true covariate prone to errors, hence we work in the functional measurement

error framework (Carroll et al., 2006). This is in stark contrast with Zucker (2005), which

requires a correct model for the unobserved covariate given the observed covariates, hence is

essentially a structural model (Carroll et al., 2006).

In summary, the proposed estimator is applicable in relatively weak assumptions, requir-

ing only symmetric error distribution, making no distributional assumption on the covariate

measured with error, allowing censoring dependent of the covariates and very large censoring

proportion. In such generality, this is the only existing consistent estimator for proportional

odds models. The critical idea of the estimator relies on constructing a martingale based

estimating equation that is not naturally derived from the standard score function consid-

eration, but has the key advantage of being invertable when measurement error presents.

The asymptotic analysis of the estimating equation requires techniques involving martingale,

nonparametric and semiparametric analysis.

The rest of the paper is organized as follows. We describe the details of the methodology

in Section 2 and study the asymptotic properties of the estimator in Section 3. In Section 3,

we also provide a method of estimating the asymptotic variance of the proposed estimator.

We evaluate the finite sample performance of our estimator via simulation studies in Section

4. To illustrate the usefulness of the method, in Section 5, we analyze a data set from an

AIDs clinical trial. Concluding remarks are given in Section 6 while all technical details are

relegated to the Supplementary materials.

2 Methodology

2.1 Model

Suppose that the observed data are independent and identically distributed (iid) copies of

(V,∆,W ∗
1 , · · · , W ∗

m,Z), where V = min(T,C) is the minimum of the time-to-event T and

the censoring time C, and ∆ = I(T ≤ C). Here Z is a p × 1 vector of covariates measured

precisely, while X is not observed. Instead of X, m repeated measurements of an unbiased

surrogate W ∗ of X are available. We assume that T and C are independent conditional on
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(Z, X). Let T be related to the covariates via the proportional odds model

pr(T ≤ t|Z, X) =
Λ(t) exp(βT

1 Z + β2X)

1 + Λ(t) exp(β1Z + β2X)
, (1)

where Λ(t) is a non-decreasing right-continuous function with Λ(0) = 0. Let Λ(t−) be the

left-hand limit of Λ at t. Define λ(t) = ∂Λ(t)/∂t if Λ is differentiable, otherwise λ(t) ≡
Λ(t)− Λ(t−). Our interest is in consistent estimation of β = (βT

1 , β2)
T and Λ. To this end,

we first propose a novel estimating equation when there is no measurement errors. We then

modify this estimating equations when X is measured with errors.

2.2 Error free estimator

Define η(Xi,Zi,β) = exp(βT
1 Zi + β2Xi), Ni(u) = I(Vi ≤ u,∆i = 1) and Yi(u) = I(Vi ≥ u).

Without loss of generality, we assume 0 < V1 ≤ V2 ≤ · · · ≤ Vn < τ < ∞, where τ = inf{t :

pr(V > t) = 0}. Then,

M(t) = N(t)−
∫ t

0

Y (u)
λ(u)η(X,Z,β)

1 + Λ(u)η(X,Z,β)
du

is a martingale with respect to filtration {Ft : t ≥ 0}, where Ft = σ{Y (u), N(u), X,Z, u ≤ t}.
Consider the situation that X is observed in the data. Then one may consistently estimate

β and Λ by solving Sβ1 = 0, Sβ2 = 0, and SΛ(u) = 0 for all u ≥ 0, where for any function

f(Λ,Z,β,α) predictable with respect to {Ft : t ≥ 0} with α being possible additional

parameters, we define

Sβ1 =
n∑

i=1

∫ τ

0

Zi{1 + Λ(u)η(Xi,Zi,β)}f{Λ(u),Zi,β,α}
{
dNi(u)− Yi(u)λ(u)η(Xi,Zi,β)du

1 + Λ(u)η(Xi,Zi,β)

}

=
n∑

i=1

(Zi∆i{1 + Λ(Vi)η(Xi,Zi,β)}f{Λ(Vi),Zi,β,α}

−Ziη(Xi,Zi,β) [F{Λ(Vi),Zi,β,α} − F (0,Zi,β,α)]) , (2)

Sβ2 =
n∑

i=1

(Xi∆i{1 + Λ(Vi)η(Xi,Zi,β)}f{Λ(Vi),Zi,β,α}

−Xiη(Xi,Zi,β) [F{Λ(Vi),Zi,β,α} − F (0,Zi,β,α)]) , (3)

SΛ(u) =
n∑

i=1

{1 + Λ(u)η(Xi, Zi,β)}
{
dNi(u)− Yi(u)

λ(u)η(Xi,Zi,β)du

1 + Λ(u)η(Xi,Zi,β)

}
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=
n∑

i=1

[{1 + Λ(u)η(Xi,Zi,β)}dNi(u)− Yi(u)λ(u)η(Xi,Zi,β)du] , for all u > 0. (4)

Here F (Λ,Z,β,α) satisfies ∂F (Λ,Z,β,α)/∂Λ = f(Λ,Z,β,α). Assuming that the observed

failure times are 0 < tn1 < · · · < tnk
, then from (4) we obtain

SΛ(tn1) =
n∑

i=1

{1 + Λ(tn1)η(Xi,Zi,β)}dNi(tn1)−
n∑

i=1

Yi(tn1){Λ(tn1)− Λ(tn1−)}η(Xi,Zi,β),

...

SΛ(tnk
) =

n∑
i=1

{1 + Λ(tnk
)η(Xi,Zi,β)}dNi(tnk

)−
n∑

i=1

Yi(tnk
){Λ(tnk

)− Λ(tnk
−)}η(Xi,Zi,β).

Using Λ(tn1−) = 0 in SΛ(tn1) = 0, we obtain

Λ̂(tn1) =

∑n
i=1 dNi(tn1)∑n

i=1 η(Xi,Zi,β){Yi(tn1)− dNi(tn1)}
,

and Λ(tnj
)’s can be estimated recursively as

Λ̂(tnj
) =

∑n
i=1 dNi(tnj

) + Λ̂(tn(j−1)
)
∑n

i=1 Yi(tnj
)η(Xi,Zi,β)∑n

i=1{Yi(tnj
)− dNi(tnj

)}η(Xi,Zi,β)
, for j = 1, · · · , k.

We did not include f{Λ(u),Z,β,α} in SΛ(u), which simplifies the computation in obtaining

Λ̂(t,β). When the last observation happens to be an event, we replace Λ̂(tnk
) with a large

value, larger than Λ̂(tnk−1
), to facilitate further analysis.

We point out that these estimating equations are the building blocks of our method, and

form one of the important contributions of our work. In addition, the estimating equations

involve both finite and infinite dimensional parameters, hence the derivation of the subse-

quent asymptotic theory is much more challenging. This is in contrast with Huang and

Wang (2000), who benefits from the existing partial likelihood score functions, which do not

involve infinite dimensional parameters, and hence are relatively easy to analyze.

Remark 1. We have left f{Λ(u),Z,β,α} to be an arbitrary function in the above de-

scription. The flexibility in choosing f{Λ(u),Z,β,α} leads to a broad class of consistent

estimators. In the regularity condition C1, we specify the requirement on f so that the

estimating equations will lead to a unique estimator in large samples. Note that when there
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is no measurement error, the score functions for the maximum likelihood estimator (Mur-

phy et al., 1997) are obtained if we replace f{Λ(u),Z,β,α} by 1/{1 + Λ(u)η(X,Z,β)}2

and multiply each summand of SΛ by 1/{1 + Λ(u)η(X,Z,β)}. However, the presence of

X in the expression 1/{1 + Λ(u)η(X,Z,β)}2 will cause difficulties as soon as X becomes

unobservable. To circumvent this issue we shall take f free-from X, so that the resulting

estimating equations are invertible and we can construct “corrected” estimating equations

in the presence of measurement errors. In the next subsection we discuss the choices of f

when X is unobserved, and discusss the concept of “corrected” estimating equations.

2.3 Estimator under measurement error

Now we consider the case when X is not observed in the data, and instead, we observe a

surrogate variable W ∗ multiple times, such that

W ∗
ij = Xi + U∗ij, j = 1, . . . ,m, i = 1, . . . , n.

Here the U∗ij’s are iid copies of the random variable U∗ that is symmetrically distributed.

Furthermore, U∗ is assumed to be independent of V,∆, X,Z, a commonly used assumption

(Huang and Wang, 2000). Define Wi = m−1
∑m

j=1W
∗
ij. Following Li and Vuong (1998),

the pdf of U∗ij and Xi are both identifiable. Thus, the likelihood of a single observation

(Wi1,Zi, Yi,∆i) has the form

{∫
fY |Z,X(yi, zi, xi)fU(wi1 − xi)fX(xi)dxi

}∆i
{∫

SY |Z,X(yi, zi, xi)fU(wi1 − xi)fX(xi)dxi

}1−∆i

.

This can be viewed as a convolution of fY |Z,X(yi, zi, ·)fX(·) with fU(·) when ∆i = 1, or a

convolution of SY |Z,X(yi, zi, ·)fX(·) with fU(·) when ∆i = 0. Thus, via deconvolution we

can show that the Fourier transform of fY |Z,X(yi, zi, ·)fX(·) or SY |Z,X(yi, zi, ·)fX(·) is unique,

hence fY |Z,X(yi, zi, xi) is unique if ∆i = 1, and SY |Z,X(yi, zi, xi) is unique if ∆i = 0. Thus,

we obtain the identifiability of β and Λ. Now we propose to estimate β and Λ by solving

Sme
β1

=
n∑

i=1

(∆iZi{1 + Λ(Vi)g1(Wi,Zi,β)}f{Λ(Vi),Zi,β,α}

−Zig1(Wi,Zi,β) [F{Λ(Vi),Zi,β,α} − F (0,Zi,β,α)]) = 0,
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Sme
β2

=
n∑

i=1

(∆i{Wi + Λ(Vi)g2(Wi,Zi,β)}f{Λ(Vi),Zi,β,α}

−g2(Wi,Zi,β) [F{Λ(Vi),Zi,β,α} − F (0,Zi,β,α)]) = 0, (5)

Sme
Λ =

n∑
i=1

[{1 + Λ(u)g1(Wi,Zi,β)}dNi(u)− Yi(u)λ(u)g1(Wi,Zi,β)du] = 0,

where

g1(Wi,Zi,β) =
η(Wi,Zi,β)

γ1

, g2(Wi,Zi,β) =
η(Wi,Zi,β)

γ2
1

(γ1W − γ2),

γ1 = E{exp(β2Ui)}, γ2 = E{Ui exp(β2Ui)}, and Ui =
∑m

j=1 U
∗
ij/m. It is easy to ver-

ify that E(g1 | X,Z) = η(X,Z,β) and E(g2 | X,Z) = Xη(X,Z,β). Consequently

E(Sme
β1
|V,∆, X,Z) = Sβ1 , E(Sme

β2
|V,∆, X,Z) = Sβ2 , and E(Sme

Λ |V,∆, X,Z) = SΛ. The last

three equalities lead to the notion of “corrected score”, in the sense that the effect of the

measurement error is corrected because the original “scores” are recovered via the interme-

diate conditional expectation step. As a result, as long as the original “scores” have mean

zero, the “corrected” ones will also yield a consistent estimator.

Here we take f{Λ(u),Z,β,α} = 1/{1 + Λ(u)η(X∗,Z,β)}2, where E∗(X | Z) indicates

the expectation of X conditional on Z calculated using a proposed model for X given Z. This

is a logical choice for f{Λ(u),Z,β,α} and it bears similar spirit as the regression calibration

idea (Carroll et al., 2006, Chapter 4). If we knew the distribution of X given Z, a natural

replacement of X would be E(X | Z). Since we do not make any distributional assumption

regarding X, we adopt a proposed model, which may be mis-specified, and replace the

unobservable X with the corresponding conditional mean of X under the proposed model.

However, unlike in the classical regression calibration treatment, our estimator will remain

consistent whether the proposed model is correct or incorrect. This choice of f{Λ(u),Z,β,α}
is our recommended choice in practice. It is important to note that the method is consistent

for any X∗ that is a function of Z.

To obtain X∗, one can further bypass the specification of a model for the distribution of

X given Z, and directly assume a model E∗(X | Z) = µ(Z,α), where α is the additional

parameter of the model if necessary. In this case, a natural estimator of α can be obtained
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through solving
n∑

i=1

∂µ(Zi,α)

∂α
{Wi − µ(Zi,α)} = 0. (6)

Again, we point out that in fact, any arbitrary choice of α will lead to a consistent estimator

for β and Λ, hence the procedure is very robust.

2.4 Estimation of γ1 and γ2

To make use of the estimating equations in (5), we need to estimate γ1 and γ2. Observe

that γ1 = E{exp(β2Ui)} = {M(β2/m)}m, where M(·) denotes the moment generating

function of U∗ij. Due to the symmetry assumption of the distribution of U∗ij, M(β2/m) =

(2
∑m

j,k=1,j<k E
[
exp{(W ∗

ij −W ∗
ik)β2/m}

]
/m(m− 1))1/2. Therefore, we estimate γ1 by

γ̂1 =

[
2

nm(m− 1)

m∑

j,k=1,j<k

n∑
i=1

exp{(W ∗
ij −W ∗

ik)β2/m}
]m/2

. (7)

Further, since γ2 = E{Ui exp(β2Ui)} = ∂E{exp(β2Ui)}/∂β2, we can write γ2 as

1

2
E(m/2−1)

[
m∑

j,k=1,j<k

2 exp{(W ∗
ij −W ∗

ik)β2/m}

m(m− 1)

]
E

[
m∑

j,k=1,j<k

2(W ∗
ij −W ∗

ik) exp{(W ∗
ij −W ∗

ik)β2/m}

m(m− 1)

]
,

and we estimate γ2 by

γ̂2 =

(
γ̂1

)(m−2)/m

× 1

nm(m− 1)

m∑

j,k=1,j<k

n∑
i=1

(W ∗
ij −W ∗

ik) exp{(W ∗
ij −W ∗

ik)β2/m}. (8)

A detailed derivation of γ̂2 is given in the Supplementary materials S1. Now we are in the

position to describe the steps of estimating the model parameters β and Λ in detail.

2.5 The complete estimation procedure

Taking into account the above derivations, we propose the complete estimation procedure

as the following:

Step 0. Form Wi = m−1
∑m

j=1W
∗
ij for i = 1, . . . , n. Obtain α̂ through solving (6).

Step 1. Form γ̂1(β) and γ̂2(β), both are functions of β, following (7) and (8).

Step 2. For fixed β and γ̂1(β), form

Λ̂{tn1 ; β, γ̂1(β)} =

∑n
i=1 γ̂1(β)dNi(tn1)∑n

i=1 η(Wi,Zi,β) {Yi(tn1)− dNi(tn1)}

8



and

Λ̂{tnj
,β, γ̂1(β)} =

∑n
i=1{γ̂1(β)dNi(tnj

) + Yi(tnj
)Λ̂{tnj−1

,β, γ̂1(β)}η(Wi,Zi,β)}∑n
i=1 η(Wi,Zi,β){Yi(tnj

)− dNi(tnj
)}

as functions of β for j = 2, . . . , k. These are the results from solving Sme
Λ {u; β, γ̂1(β)} = 0

sequentially at u = tn1 , . . . , tnk
.

Step 3. We obtain β̂ through solving

n∑
i=1

φ[Oi; β, Λ̂{Vi; β, γ̂1(β)}, γ̂(β), α̂] = 0,

where Oi = (Wi,Zi, Vi,∆i), φ = (φT
1 , φ2)

T, and

φ1{Oi; β,Λ(Vi),γ,α} = Zi∆i{γ1 + Λ(Vi)η(Wi,Zi,β)}f{Λ(Vi),Zi,β,α}

−Ziη(Wi,Zi,β)[F{Λ(Vi),Zi,β,α} − F (0,Zi,β,α)],

φ2{Oi; β,Λ(Vi),γ,α} = ∆i{Wiγ
2
1 + Λ(Vi)(γ1Wi − γ2)η(Wi,Zi,β)}f{Λ(Vi),Zi,β,α}

−(γ1Wi − γ2)η(Wi,Zi,β) [F{Λ(Vi),Zi,β,α} − F (0,Zi,β,α)] .

Step 4. Go to Steps 1 and 2 to obtain γ1(β̂) and Λ̂{u, β̂, γ̂1(β̂)} respectively.

In Step 3, γ̂1(β), γ̂2(β) and Λ̂{tnj
,β, γ̂1(β)} are functions of β, hence the resulting esti-

mating equations
∑n

i=1 φ[Oi; β, Λ̂{Vi; β, γ̂1(β)}, γ̂(β), α̂] = 0 contain β as the only unknown

quantity and are solved to obtain β̂, and the estimator is referred to as error corrected esti-

mator. This estimation procedure is a typical profiling procedure, hence we do not need to

iterate the above steps. One can of course choose to use a backfitting procedure instead of

profiling, where iteratively solving for β at fixed Λ̂, γ̂1, γ̂2, and solving for γ1, γ2 and Λ at

fixed β̂ will be required.

To solve the estimating equations in Step 3, we used a standard Newton-Raphson proce-

dure which requires an initial value for β. In both the simulation and the data example, we

used the classical regression calibration estimates as the initial value. We also experimented

with using the naive estimator as the initial value and the results are identical.
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3 Asymptotic properties

3.1 Asymptotic properties

To present the asymptotic properties of the proposed error corrected method, we first need

to introduce some necessary notations. For any vector or matrix a, we denote aaT by

a⊗2, and we use fβ(Λ,Z,β,α) and Fβ(Λ,Z,β,α) to represent the partial derivative of f

and F with respect to β. Define γ = [γ1(β2), γ2(β2)]
T = (γ1, γ2)

T, κ1 = E{exp(2β2U)},
κ2 = E{U exp(2β2U)} and let fγ = (fγ,1, fγ,2)

T with

fγ,1(W
∗
i ,β) =

M(m−2)(β2/m)

m− 1

m∑

j,k=1,j<k

[
exp

{
(W ∗

ij −W ∗
ik)β2

m

}
−M2

(
β2

m

)]
,

fγ,2(W
∗
i ,β) =

{
m(m− 2)

4

}
M(m−4)

(
β2

m

) [
2

m(m− 1)

m∑

j,k=1,j<k

exp

{
(W ∗

ij −W ∗
ik)β2

m

}

−M2

(
β2

m

)]
∂M2(β2/m)

∂β2

+M(m−2)

(
β2

m

)[
1

m(m− 1)

×
m∑

j,k=1,j<k

(W ∗
ij −W ∗

ik) exp

{
(W ∗

ij −W ∗
ik)β2

m

}
−m

2

∂M2(β2/m)

∂β2

]
.

Further define C1(s) = E{Y (s)η(W,Z,β)}, C2(s) = E[Y (s)η(W,Z,β)λ(s)η(X,Z,β)/{1 +

Λ(s)η(X,Z,β)}] = E{η(W,Z,β)dN(s)/ds}, C3(s) = E{dN(s)/ds}, C4(s) = E{(ZT,W )T

Y (s)η(W,Z,β)}, C5(s) = E[(ZT,W )TY (s)η(W,Z,β)λ(s)η(X,Z,β)/{1+Λ(s)η(X,Z,β)}] =

E{(ZT,W )TY (s)η(W,Z,β) dN(s)/ds},D1(s) = exp[− ∫ s

0
{C2(u)/C1(u)}du],D2(s) =

∫ s

0
[D1(u)

C3(u)/{D1(s)C1(u)}]du, D3(s) =
∫ s

0
{D1(u)[Λ(u,β, γ1){C1(u)C5(u)−C2(u)C4(u)}−γ1C3(u)

C4(u)]}{D1(s)C
2
1(u)}−1du, φγ = E[∂φ{O; β,Λ(V ),γ,α}/∂γT], and the elements of φγ

are φγ,11 = E[Z∆f{Λ(V ),Z,β,α}], φγ,12 = 0, φγ,21 = E(∆Wf{Λ(V ),Z,β,α}{2γ1 +

Λ(V )η(W,Z,β)}−Wη(W,Z,β)×[F{Λ(V ),Z,β,α}−F (0,Z,β,α)]), φγ,22 = E(−η(W,Z,β)

[∆f{Λ(V ),Z,β,α}Λ(V )− F{Λ(V ),Z,β,α}+ F (0,Z,β,α)]). Also,

γβ =
∂γ(β)

∂βT
=

[
0 E{exp(β2U)U}
0 E{exp(β2U)U2}

]
=

[
0 γ2

0 E{exp(β2U)U2}
]
,

φβ =E

[
∂φ{O; β,Λ(V ),γ,α}

∂βT

]

=E

(
[∆Λ(V )f{Λ(V ),Z,β,α} − F{Λ(V ),Z,β,α}+ F (0,Z,β,α)]η(W,Z,β)

10



×
(

Z
γ1W − γ2

)(
Z
W

)T )

+ E

[
Z∆{γ1 + Λ(V )η(W,Z,β)}fT

β {Λ(V ),Z,β,α}
∆{Wγ2

1 + Λ(V )(γ1W − γ2)η(W,Z,β)}fT
β {Λ(V ),Z,β,α}

]

− E

[
Zη(W,Z,β)[FT

β {Λ(V ),Z,β,α} − FT
β (0,Z,β,α)]

(γ1W − γ2)η(W,Z,β)
[
FT

β {Λ(V ),Z,β,α} − FT
β (0,Z,β,α)

]
]
,

φΛ(O) =
∂φ{O; β,Λ(V ),γ,α}

∂Λ(V )

=

(
Zη(W,Z,β)[(∆− 1)f{Λ(V ),Z,β,α}+ f ′{Λ(V ),Z,β,α}∆Λ(V )]

(γ1W − γ2)η(W,Z,β)[(∆− 1)f{Λ(V ),Z,β,α}+ f ′{Λ(V ),Z,β,α}∆Λ(V )]

)

+

[
Z∆γ1f

′{Λ(V ),Z,β,α}
f ′{Λ(V ),Z,β,α}∆Wγ2

1

]
,

D4(s) = E

{
Y (s)φΛ(O)D1(s)

D1(V )C1(s)

}
, g(s,W,Z) = D4(s) {γ1(β) + Λ(s)η(W,Z,β)} ,

ψ1(s, t,Wi,Zi) = I(0 ≤ s ≤ t){D1(s)/C1(s)D1(t)}{γ1(β)+Λ(s)η(Wi,Zi,β)}−{D2(t)(0
T, γ2)+

DT
3 (t)}Σ−1

H g(s,Wi,Zi), ψ2(t,Xi, Ui,W
∗
i ,Zi, Yi) = D2(t)fγ,1(W

∗
i ,β)−{

D2(t)(0, γ2) + DT
3 (t)

}
Σ−1

H

[φ{Oi; β,Λ(Vi),γ,α}+ φγfγ(W
∗
i ,β) + E{φΛ(O)D2(V )}fγ,1(W

∗
i ,β)], where

ΣH = φβ + φγγβ + E
[
φΛ(Oi)D3(Vi) +

{
0(p+1)×p, γ2φΛ(Oi)D2(Vi)

}]
.

Finally, define

ΣM =E

[
φ{Oi; β,Λ(Vi),γ,α}+

∫ τ

0

g(s,W,Z)dM(s)

+ E {φΛ(O)D2(V )} fγ,1(W
∗,β) + φγfγ(W

∗,β)

]⊗2

.

The following theorems establish the consistency and the asymptotic normality of the esti-

mator in terms of its first order asymptotic properties. The regularity conditions and the

proofs are given in the Supplementary materials S2, S3, S4, and S5.

Theorem 1. Assume the regularity conditions hold. When n→∞, |β̂ − β| → 0 in proba-

bility and supu∈[0,τ ] |Λ̂{u, β̂, γ̂1(β̂)} − Λ(u)| → 0 in probability.

Theorem 2. Assume the regularity conditions hold. When n→∞,

i)
√
n(β̂ − β) → Normal(0,Σ−1

H ΣMΣ−T
H ) in distribution;

11



ii)
√
n[Λ̂{t, β̂, γ̂1(β̂)}−Λ(t)] follows a zero-mean Gaussian process with the covariance kernel

Ω(t, t′) = E

{∫ τ

0

ψ1(s, t,W,Z)dM(s) + ψ2(t,X, U,W
∗,Z, Y )

}⊗2

.

Since the estimating equations in Section 2.3 reduce to (2), (3) and (4) when Wi = Xi,

γ1 = 1 and γ2 = 0, the corresponding variance formula for the error-free case can be directly

derived from the results in these theorems.

3.2 Estimation of the asymptotic variance

We now further study how to estimate the asymptotic variance of β̂. We first write out the

relation between X and Z as X = ϑ1(Z, ζ1) + ϑ
1/2
2 (Z, ζ2)ex, where ζ1 and ζ2 are unknown

parameters, and E(ex) = 0. Here, for simplicity, we used parametric forms for the mean

and variance function, while nonparametric model can also be used for increased flexibility.

Define two weighted averages (Hall and Ma, 2007) of (W ∗
i1, . . . ,W

∗
im), Wia =

∑m
j=1 ajW

∗
ij

and Wib =
∑m

j=1 bjW
∗
ij, where aj = bj = 1/(2[m/2]) for j = 1, . . . , [m/2], and aj = −bj =

1/(2m − 2[m/2]) for j = [m/2] + 1, . . . ,m. Here [m/2] denotes the largest integer ≤ m/2.

Note that
∑m

j=1 aj = 1 and
∑m

j=1 bj = 0 and
∑m

j=1 a
2
j =

∑m
j=1 b

2
j . To estimate ζ1 we

shall solve
∑n

i=1 ∂{ϑ1(Zi, ζ1)/∂ζ1}{Wia − ϑ1(Zi, ζ1)} = 0. To estimate ζ2 we shall solve
∑n

i=1 ∂{ϑ2(Zi, ζ2)/∂ζ2}[{Wia − ϑ1(Zi, ζ̂1)}2 − σ̂2
a − ϑ2(Z, ζ2)] = 0, where σ̂2

a =
∑n

i=1W
2
ib/n.

Observe that due to symmetry, the distribution of Uia =
∑m

j=1 ajU
∗
ij is the same as that of

Wib = Uib =
∑m

j=1 bjU
∗
ij, and it is a symmetric distribution. Thus, the density of Uia can

be estimated via f̂Ua(u) = (1/nh)
∑n

i=1K{(u − Uib)/h}, where we let K(·) be a symmetric

kernel function and h > 0 be a bandwidth, and we select the optimal bandwidth via the

plug-in bandwidth selection method given in Sheather and Jones (1991). Next we estimate

ω by maximizing the estimated likelihood of Wia given Zi, i.e.,

n∏
i=1

L(n)∑

l=1

ωl
1

nh

n∑
i1=1

K[h−1{(Wia − ϑ1(Zi, ζ̂1)− ϑ
1/2
2 (Zi, ζ̂2)el − Ui1b}],

where we approximate the expectation with respect to ex through adding the probabil-

ity masses ω = (ω1, · · · , ωL(n))
T at points e1 < · · · < eL(n). Define Xil = ϑ1(Zi, ζ̂1) +

12



ϑ
1/2
2 (Zi, ζ̂2)el, and let ω̂ = (ω̂1, · · · , ω̂L(n))

T ,

κ̂1 =

[
2

nm(m− 1)

m∑

j,k=1,j<k

n∑
i=1

exp{(W ∗
ij −W ∗

ik)2β̂2/m}
]m/2

,

κ̂2 =

(
1

2

) (m
2

)
(κ̂1)

(m−2)/m

[
4

nm2(m− 1)

n∑
i=1

∑

j<k

(W ∗
ij −W ∗

ik) exp{(W ∗
ij −W ∗

ik)2β̂2/m}
]

be the estimators of ω, κ1 and κ2, respectively. In Section S5 of the Supplementary materials,

we express ΣM as ΣM = G(1) + G(2) + G(3) + G(4) + G(5) + (G(4) + G(5))T . This expression

allows us to construct a consistent estimator of the asymptotic variance of β̂, which we

provide in Corollary 1.

Corollary 1. A consistent estimator of the asymptotic variance of β̂ is n−1Σ̂−1
H Σ̂M Σ̂−T

H ,

where Σ̂H ≡ φ̂β + φ̂γγ̂β + n−1
∑n

i=1[φ̂Λ(Oi)D̂3(Vi) + {0(p+1)×p, γ̂2φ̂Λ(Oi)D̂2(Vi)}], and

Σ̂M = Ĝ(1) + Ĝ(2) + Ĝ(3) + Ĝ(4) + Ĝ(5) + (Ĝ(4) + Ĝ(5))T

with Ĝ(1) = n−1
∑n

i=1 φ⊗2{Oi; β̂, Λ̂(Vi), γ̂, α̂}, Ĝ(2) = n−1
∑n

i=1 ∆ig
⊗2(Vi,Wi,Zi), Ĝ(3) =

n−1
∑n

i=1

[
φγfγ(W

∗
i , β̂) + E

{
φΛ(O)D̂2(V )

}
fγ,1(W

∗
i , β̂)

]⊗2

, Ĝ(4) = n−1
∑n

i=1 φ{Oi; β̂, Λ̂(Vi),

γ̂, α̂}[φγfγ(W
∗
i , β̂) + E

{
φΛ(O)D̂2(V )

}
fγ,1(W

∗
i , β̂)]T, and

Ĝ(5) =
1

n

n∑
i=1

∆iφ{Oi; β̂, Λ̂(Vi), γ̂, α̂}gT(Vi,Wi,Zi)

+
1

n

n∑
i=1




Ziη(Wi,Zi, β̂)

(γ̂1Wi − γ̂2)η(Wi,Zi, β̂)


 ∑

Vk:∆k=1

f{Λ̂(Vk),Zi, β̂, α̂}λ̂(Vk)∆ig
T (Vi,Wi,Zi)Yi(Vk)

+
1

n

n∑
i=1

L(n)∑

l=1

∑
Vk:∆k=1

(


Ziη(Xil,Zi,β){γ̂2
1 + Λ̂(Vk)η(Xil,Zi, β̂)κ̂1}

γ̂3
1η(Xil,Zi, β̂)Xi + Λ̂(Vk)η

2(Xil,Zi, β̂)(γ̂1Xilκ̂1 + γ̂1κ̂2 − γ̂2κ̂1)




× D̂T
4 (Vk)λ̂(Vk)η(Xil,Zi, β̂)

1 + Λ̂(Vk)η(Xil,Zi, β̂)

∑
Vj≥Vk

f{Λ̂(Vj),Zi, β̂, α̂}λ̂(Vj)Yi(Vj)

)
ω̂l

− 1

n

n∑
i=1

L(n)∑

l=1

∑
Vk:∆k=1

(



Zi[γ̂
2
1 + γ̂2

1{Λ̂(Vk) + Λ̂(Vi)}η(Xil,Zi, β̂)

+Λ̂(Vk)Λ̂(Vi)η
2(Xil,Zi, β̂)κ1]

γ̂3
1Xil + γ̂3

1Xilη(Xil,Zi, β̂)Λ(Vi) + γ̂2
1η(Xil,Zi, β̂)Λ̂(Vk)(γ̂1Xil + γ̂2)

+η2(Xil,Zi, β̂)Λ̂(Vk)Λ̂(Vi)(γ̂1κ̂1Xil + γ̂1κ̂2 − γ̂2κ̂1)



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× D̂T
4 (Vk)λ̂(Vk)η(Xil,Zi,β)

1 + Λ(Vk)η(Xil,Zi,β)
f{Λ̂(Vi),Zi, β̂, α̂}∆iYi(Vk)

)
ω̂l.

Note that other than the last two terms of G(5), all other terms of ΣM are estimated

via empirical averages of obvervable random variables. While the root-n consistency and

asymptotic normality are established in Theorems 1 and 2, the results in Corollary 1 further

allow us to utilize these results to perform inference. All these results are established in the

context of the proportional odds model subject to a symmetric, but otherwise unspecified

covariate measurement errors, and without making any parametric assumption on the distri-

bution of the unobserved covariate either. Thus, the estimation and inference are conducted

in the functional measurement error framework (Carroll et al., 2006).

4 Simulation studies

We now investigate the finite sample performance of the proposed error corrected method

through simulation studies. We simulated 1,000 data sets through generating Z from

Normal(0, 1), and generating X from a two-component mixture of normal distributions,

(1/3)Normal(−0.6, 0.52) + (2/3)Normal(1.25, 0.52). The purpose of taking such a non-

standard distribution for X is to show that the method can handle any distribution for

X. The time-to-event T was generated from the proportional odds model (1) with Λ(t) = t2,

and β1 = β2 = 1. To generate censoring time C independent of X and Z, we used Exp(e1.7)

and Exp(e0.2), the exponential distributions with mean e1.7 and e0.2, respectively. This re-

sults in an average of 20% and 50% censoring respectively. For censoring process dependent

on X and Z, we generated the censoring time C from Exp(e2.25−X−Z) and Exp(e0.75−X−Z),

resulting in 20% and 50% censoring, respectively. The two unbiased surrogate variables W ∗
1

and W ∗
2 were simulated by adding random noise U∗ to X. In order to show that the pro-

posed error corrected approach can handle any symmetric error distribution, we considered

two different distributions for U∗, Normal(0, 1) and Uniform(−1.75, 1.75), and in both cases

the error variances were equal to the variance of X.

We analyzed the simulated data sets using four methods, the naive method (NV), the
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regression calibration (RC), the method by Cheng and Wang (2001) (referred to as CW),

and the error corrected (COR) method proposed in Section 2.3. For the naive method, we

used the maximum likelihood method of Murphy et al. (1997) to estimate β and Λ, with

Xi replaced by Wi = (W ∗
i1 +W ∗

i2)/2. For the regression calibration method, we implemented

the same maximum likelihood method, but with Xi replaced by X̂i, where X̂i = (1/σ̂2 +

1/σ̂2
U){W i/σ̂

2
U + (ζ̂0 + ζ̂T

1 Zi)/σ̂
2} with σ̂2, σ̂2

U , ζ̂0 and ζ̂1 being the estimators of σ2, σ2
U =

var(U), ζ0 and ζ1, respectively. Furthermore, ζ0 and ζ1 are the coefficients of the linear

regression of X on Z, whereas σ2 represents the conditional variance of X given Z. To

implement the method by Cheng and Wang (2001), we estimated the parameters under the

assumption that C is independent of any of T,X,Z or U∗, and we used normal models for

bothXi−Xi′ and U∗ij−U∗i′j. Lastly, in our error corrected method, we used f{Λ(t), Z,β,α} =

{1 + Λ(t) exp(Zβ1 + X∗β2)}−2, where X∗ = E(X | Z) was obtained from the linear model

W = X + U = α0 + Zα1 + ε + U , and the standard errors of the estimator were estimated

using the analytical formula given in Corollary 1 in Section 3. We used the Newton-Raphson

procedure to solve the estimating equations, with the convergence criterion set to be either

the absolute value of the estimating equations are smaller than 10−8 for each component, or

the relative difference of the two latest iterations is smaller than 10−8 for each component in

the β. Both convergence criteria are standard in the usual statistical softwares. In estimating

standard errors, integrals such as
∫ t

0
f ∗dΛ̂ are replaced by

∑
k:tk≤t,∆k=1 f

∗(tk)λ̂(tk), for any

generic function f ∗.

Tables 1 and 2 contain the simulation results for the normal and uniform errors respec-

tively. For both tables we took two different sample sizes n = 500 and 1, 000. We presented

the bias, empirical standard error, median absolute deviation. In addition, for our error

corrected method, we also provided the estimated standard error and the Wald type 95%

coverage probability.

The general trend is the same in both tables. Overall the naive estimator is very bi-

ased. The regression calibration estimator has smaller bias, but its bias is still substantial

compared with our error corrected estimator. In fact, the finite sample bias, especially in
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estimating β2, is greatly reduced in the proposed error corrected method. The variance of

the estimators decreases with the sample size n. Importantly, the estimated standard error

based on our asymptotic results and the empirical standard error are quite close, and the

coverage probabilities are reasonably close to the nominal level.

When the censoring time C is independent of both covariates and is generated from

an Exponential distribution, the method of Cheng and Wang (2001) works surprisingly

well (Tables 1 and 2) despite the fact that several model assumptions are violated in these

simulations. However, as soon as the censoring mechanism depends on X and Z or the

censoring rate is high, their method shows large bias. To further investigate this matter, in

the uniform measurement error scenario with n = 1, 000, we generated C in three different

cases. In case 1, C followed Exp(0.22). In case 2, C followed Uniform(0, 0.5). In case 3, C

followed Exp(e−0.8−X−Z). All three cases have about 85% censoring, roughly the same as in

the data example. In case 1, C is independent of the covariates and the supports of the time-

to-event T and censoring time C are similar. In case 2, C is also independent of the covariates,

but the support of C is shorter than that of T . This is a common scenario in many clinical

studies and is also the case for our real data example. In case 3, the censoring mechanism

depends on the covariates and the supports of T and C are similar. This simulation results

in Table 3 indicate dramatically large estimation bias and MSE of the Cheng and Wang

(2001) method in comparison with our method for cases 2 and 3. In case 1, although the

bias of CW is comparable with ours, their MSE is larger than ours. In conclusion, for heavy

censoring, regardless of whether censoring is dependent on the covariates or not, the bias

of the CW method is substantial. This study verifies the inconsistency of the estimating

equations of Cheng and Wang (2001), similar to the inconsistency of Cheng et al. (1995)

pointed out by Fine et al. (1998).

Finally, the computation of the proposed error corrected estimator is also much simpler

and faster than that of the Cheng and Wang (2001) method. This is mainly because their

method requires numerical integration and is hence very time consuming.
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5 Real data analysis

For the purpose of illustration we now apply the proposed method to analyze a dataset

from the ACTG 175 study, a clinical trial of HIV therapy (Hammer et al., 1996). This was

a randomized double-blinded study to investigate the effect of a single nucleoside or two

nucleosides among HIV-1 infected adults. We considered only n = 1, 036 subjects who did

not have antiretroviral treatment before this trial, and among them 262 received 600 mg

of zidovudine (treatment 1), 257 received 600 mg of zidovudine plus 400 mg of didanosine

(treatment 2), 260 received 600 mg of zidovudine plus 2.25 mg of zalcitabine (treatment

3), and 257 received 400 mg of didanosine (treatment 4). The primary clinical endpoints

were progression to AIDS and/or death, thus we consider T as the time to AIDs or death

from the date the treatment started. In our data, only 85 subjects experienced the events

during an average follow-up time of 32 months. For all subjects, two (m = 2) baseline CD4

measurements that were taken prior to the treatment started, were available. CD4 cells help

to fight infection. Therefore, low CD4 counts indicates weak immune system and it is used

as a marker of the stage of HIV disease.

We fit model (1) to this data set, where the logarithm of the actual CD4 count at the

baseline minus 5.89 is considered as X. The two baseline measurements are considered as

two erroneous measurements for X. The three dummy variables corresponding to the four

treatments are considered to be error free covariates Z where treatment 1 is considered as

the reference category. We analyze the data set using four methods, NV, RC, CW, and

COR described in the simulation section. For the CW method, T and C are assumed to be

independent.

Table 4 contains the estimates and their corresponding standard errors. All methods

indicate a statistically significant (at the 5% level) association betweenX and T . We also find

that compared to the monotherapy with zidovudine, other three therapies have statistically

significant association (at the 5% level) with T , in particular, the results indicate that the

therapies tend to delay the time-to-event. Interestingly, after adjusting for the measurement

errors, the CW estimate of the coefficient for CD4 counts, β2, is substantially different from
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that of NV, RC, and COR methods, although the effect of the log(CD4) still turned out

to be statistically significant. Our experience with the simulation studies indicates that the

distinct result of the CW estimator is likely due to the high censoring percentage in the data

(around 90%), shorter support of C compared to that of T as the subjects were followed for

a maximum of three and half years, and the possible dependence between the covariates and

the censoring mechanism, which violate the model assumption required by the CW estimator.

The dependence between the covariates and the censoring mechanism is indicated when we

fit the Cox model to the censoring distribution using (Vi, (1 − ∆i),Zi,W
†
i ), i = 1, · · · , n,

where W †
i = I(Wi < −0.4), with −0.4 being the 15th quantile of Wi. The results show

statistically significant association (at the 1% level) between C and covariates (Z and W †).

So, we also suspect that C and X are dependent as well.

Inspired by a referee’s suggestion, we further estimated the parameters using the proposed

method with f = 1/{1+Λ(u)η(X∗,Z,β)}r for r = 0, 1, 2, 3, 4, 5, 10, 15. Based on the results

in Table 5, although the estimates differ with r, the magnitude of the change is quite small.

Our experience in more extensive numerical experiments not reported here also indicates

that the variability in estimating β is somewhat insensitive to the choice of f .

Following a referee’s request, we also conducted a model checking for this data example.

Because there is no existing method to check proportional odds assumption when a covariate

is measured with errors, we developed the following graphical tools, inspired by the graphical

tools developed for the Cox proportional hazard model without measurement errors (Klein

and Moeschberger 2003, Chapter 11.4, page 363). Note that the proportional odds model has

the property pr(T ≤ t|X,Z)/pr(T > t|X,Z) = log{Λ(t)}+βT
1 Z+β2X. In the data example,

Z is a nominal categorical variable. Define X† to be zero when X is less than or equal to

r = −0.1 and one otherwise, where r = −0.1 is the median of Wi. Define prz(T ≤ t|X†) =

pr(T ≤ t|X†,Z = z). Then in each category of Z, we plot log{p̂rz(T ≤ t|X†)/p̂rz(T > t|X†)}
as a function of time t. If the proportional odds assumption holds, then the two curves

corresponding to X† = 0 and X† = 1 will have the same shape and they will differ only by

a constant shift. Here log{p̂rz(T ≤ t|X†)} is an estimator of log{prz(T ≤ t|X†)}. When X
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is measured with error, deterministic classification of the subjects into two groups X† = 0

and X† = 1 is not possible. Therefore, first we estimate pr(X†
i = 0|Wia) = pr(Xi ≤

r,Wia)/f(Wia) through

qi =
p̂r(Xi ≤ r,Wia)

f̂(Wia)
=

∑L(n)
l=1 ωl

∑n
k=1K[h−1{(Wia −Xil − Ukb}]I(Xil ≤ r)∑L(n)

l=1 ωl

∑n
k=1K[h−1{(Wia −Xil − Ukb}]

,

where Xil = ϑ1(Zi, ζ̂1) + ϑ
1/2
2 (Zi, ζ̂2)el. To estimate the survival function prz(T > v|X† =

k) with uncertain membership, we use the procedure developed in Ma et al. (2011) for

estimating a distribution function. Note that for any v, E{I(Vi > v)} = qiprz(Ti > v|X†
i =

0)prz(Ci > v|X†
i = 0)+(1−qi)prz(Ti > v|X†

i = 1)prz(Ci > v|X†
i = 1) for i = 1, · · · , n. Thus,

using I(Vi > v) as the observed response and qi = (qi, 1− qi)
T as the observed predictor for

the ith subject, the least square solutions of the unknowns are
{

prz(T > v|X† = 0)prz(C > v|X† = 0)
prz(T > v|X† = 1)prz(C > v|X† = 1)

}
= (

∑
i:Zi=z qiq

T
i )−1

∑
i:Zi=z qT

i I(Vi > v). (9)

To further handle the censoring issue and to extract the survival function prz(T > v|X† = k)

alone, we consider the following. Let λT0(t) and λT1(t) be the hazard of T when Z = z and

X† = 0 and X† = 1, respectively, and the corresponding hazard of the censoring variable

are λC0(t) and λC1(t), respectively. Then prz(T > v|X† = k) = exp{− ∫ v

0
λTk(u)du} and

prz(C > v|X† = k) = exp{− ∫ v

0
λCk(u)du} for k = 0 and 1. Since N(t)− ∫ t

0
Y (s){qλT0(s) +

(1−q)λT1(s)}ds and I(V ≤ t,∆ = 0)−∫ t

0
Y (s){qλC0(s)+(1−q)λC1(s)}ds are two martingale

processes, for any v, we consider two sets of estimating equations
n∑

i=1

dNi(v) = λT0(v)
n∑

i=1

qiYi(v) + λT1(v)
n∑

i=1

(1− qi)Yi(v), (10)

n∑
i=1

I(Vi = v,∆i = 0) = λC0(v)
n∑

i=1

qiYi(v) + λC1(v)
n∑

i=1

(1− qi)Yi(v). (11)

Therefore, for each v we estimate the hazards from equations (9), (10), and (11). Once the

hazards are estimated, we obtain p̂rz(T > v|X† = k) = exp{−∑
i:ui≤v,∆i=1 λ̂Tk(ui)} and

produce the plots in Figure 1. None of the four plots indicates any striking violation of the

proportional odds assumption, such as crossing of the curves. Thus, proportional odds model

is a suitable model for this data set. Although the method was developed for a discretized

X, the method is useful for detecting any major model violation.
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6 Discussion

We have proposed an error corrected martingale based estimating equation to analyze the

time-to-event data in the proportional odds model when both covariate measurement error

and right censoring to event time occur. In contrast to the existing literature, we do not

assume or estimate the distribution for the measurement errors or for the true unobservable

covariates. We have merely required multiple measurements, which is needed even for iden-

tifiability in such models. Our results on the theoretical properties of the estimators show

that the estimators have the desired asymptotic properties which facilitate further inference.

Finally, although the estimator is designed for errors in covariates, it captures the usual

error-free covariates case as well by simply allowing the error distribution to be a point mass

at zero. This provides a new estimator in its own for the usual proportional odds models

without measurement errors. As pointed out by a referee, small sample and large error vari-

ance can break any consistent estimator designed for measurement error problems. Thus,

improving the finite sample performance under small sample size and large error, such as

the one investigated in Song and Huang (2005), is definitely an important research question

worth investigating.

Compared to the Cox model, other time-to-event models have received relatively less

attention when an important covariate is measured with errors. The present article with

nonparametric correction is the first attempt to break such barrier. However, the problem is

far from being completely resolved. For example, estimation efficiency is not achieved in the

estimator. In fact, our preliminary analysis indicates that even in the Cox model, efficient

estimator can be hard to achieve. The main difficulties in achieving efficiency include the

need to estimate the measurement error distribution, the need to estimate the distribution of

the covariate subject to error, and the need to estimate the censoring process when covariates

are not all observable. We envision that the proposed error corrected method and some of its

apparent limitations will help generate new ideas. In particular, the proposed error corrected

method will be useful for developing methods for handling measurement errors in multiple

time-dependent covariates (Song et al., 2002) in the proportional odds model. Also, we
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believe that existing variable selection technique in the presence of measurement error (Ma

and Li, 2010) can be integrated with our proposed error corrected method in the time-to-

event model, in particular in the proportional odds model. Our method will also help to

develop methodology for handling covariate measurement errors in multivariate failure time

model (Greene and Cai, 2004).

It is well known that estimating equation based methods face the potential difficulty

of having multiple roots in finite samples. Although there are some available methods for

multiple roots of estimating equations in parametric models (Small and Wang, 2003; p.

163), as far as we are aware, in the current literature of semiparametric models like ours,

multiple roots issue is handled through empirical analysis. For example, in the measure-

ment error problems, one could compare the naive estimator and the regression calibration

estimator with the multiple roots obtained from the estimating equations, and choose the

root that is most sensible based on the knowledge that regression calibration estimator is an

approximately consistent estimator that corrects the bias inherent in the naive estimator.

Alternatively, in the presence of multiple roots, one may compute an estimated version of

the likelihood

L =
n∏

i=1

{∫
fY |Z,X(Vi|X,Zi)fW,X|Z(Wia, X|Zi)dX

}∆i

×
{∫

pr(Ti ≥ Vi|X,Zi)fW,X|Z(Wia, X|Zi)dX

}1−∆i

,

via

L̂ =
n∏

i=1

L(n)∑

l=1

n∑

k=1

([∑k
j=1{Λ̂(tnj

)− Λ̂(tnj−1
)}I(tnj

≤ Vi < tnj+1
)η(Xil,Zi, β̂)

{1 +
∑k

j=1 Λ̂(tnj
)I(tnj

≤ Vi < tnj+1
)η(Xil,Zi, β̂)}2

]∆i

×
{

1

1 +
∑k

j=1 Λ̂(tnj
)I(tnj

≤ Vi < tnj+1
)η(Xil,Zi, β̂)

}1−∆i
)

×
(
ω̂l

nh

)
K{h−1(Wia −Xil −Wkb)},

and choose the root that maximizes L̂. The notations ω̂, Xil, Wia, Wib, K, and h are defined

in Section 3.2.
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Table 3: Results of the simulation study with 2, 000 replications. NV, RC, CW, and COR
stand for the naive, regression calibration, Cheng and Wang (2001) and the error corrected
estimators. SD and MSE denote the standard deviation and the mean squared error, respec-
tively. The errors U∗ ∼ Uniform(−1.75, 1.75). All entries are multiplied by 10.

Method Case 1 Case 2 Case 3
Bias SD MSE Bias SD MSE Bias SD MSE

NV β1 −0.44 1.18 0.15 −0.41 1.04 0.13 −2.08 1.30 0.60
β2 −4.09 0.91 1.76 −4.12 0.79 1.76 −4.44 0.93 2.06

RC β1 −0.44 1.18 0.16 −0.42 1.05 0.13 −2.08 1.30 1.26
β2 −2.02 1.23 0.59 −2.13 1.08 0.58 −2.56 1.25 0.82

CW β1 −0.56 3.32 1.13 −3.51 1.22 1.38 −5.54 1.17 3.22
β2 −0.33 4.89 2.39 −3.82 1.45 1.67 −5.28 1.57 3.04

COR β1 0.10 1.49 0.23 0.09 1.29 0.17 0.44 1.96 0.40
β2 0.42 2.80 0.80 0.45 2.40 0.59 0.50 2.37 0.59

Table 4: Analysis of the ACTG 175 aids clinical trial data. Est. and SE stand for estimate
and standard error, respectively. Z, Z+D, Z+Z, and D stand for zidovudine, zidovudine
plus didanosine, zidovudine plus zalcitabine, and didanosine, respectively. Here Est. and
SE stand for the estimates and standard errors, respectively. For the NV, RC, and CW
methods, the standard errors were calculated based on 5,000 bootstrap samples. For the
COR method, the standard errors are based on asymptotic results.

Covariates NV RC CW COR
Est. SE Est. SE Est. SE Est. SE

Z+D (Ref: Z) −0.780 0.325 −0.759 0.325 −0.164 0.125 −0.801 0.344
Z+Z (Ref: Z) −1.004 0.340 −0.999 0.344 −0.267 0.103 −0.999 0.361
D (Ref: Z) −0.748 0.313 −0.753 0.314 −0.217 0.112 −0.814 0.338
log(CD4) −2.186 0.404 −2.576 0.477 −0.854 0.194 −2.700 0.570

Table 5: Analysis of the ACTG 175 aids clinical trial data using the error corrected method
with f{Λ(u),Z,β,α} = 1/{1 + Λ(u)η(X∗,Z,β,α)}r. Est. and SE stand for estimate and
standard error, respectively. Z, Z+D, Z+Z, and D stand for zidovudine, zidovudine plus
didanosine, zidovudine plus zalcitabine, and didanosine, respectively.

Covariates r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 10 r = 15
Z+D (Ref: Z) Est. −0.783 −0.793 −0.803 −0.813 −0.823 −0.830 −0.869 −0.904

SE 0.361 0.358 0.355 0.352 0.350 0.348 0.340 0.335
Z+Z (Ref: Z) Est. −0.979 −0.990 −1.002 −1.012 −1.023 −1.033 −1.080 −1.120

SE 0.366 0.364 0.361 0.358 0.356 0.354 0.347 0.346
D (Ref: Z) Est. −0.794 −0.805 −0.815 −0.825 −0.834 −0.843 −0.879 −0.906

SE 0.339 0.337 0.334 0.332 0.329 0.328 0.325 0.329
log(CD4) Est. −2.685 −2.691 −2.697 −2.702 −2.705 −2.708 −2.703 −2.679

SE 0.567 0.561 0.557 0.554 0.551 0.550 0.557 0.584



Figure 1: Plot of log{pr(T ≤ t)/pr(T > t)} versus t for each treatment group. The solid
and dotted curves correspond to the cases of X ≤ −0.1 and X > −0.1 respectively, where
X = log(True CD4 count) − 5.89. Z, Z+D, Z+Z, and D represent zidovudine, zidovudine
plus didanosine, zidovudine plus zalcitabine, and didanosine, respectively.


