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Summary

Frequentist standard errors are a measure of uncertainty of an estimator, and the basis for statis-
tical inferences. Frequestist standard errors can also be derived for Bayes estimators. However,
except in special cases, the computation of the standard error of Bayesian estimators requires
bootstrapping, which in combination with Markov chain Monte Carlo (MCMC) can be highly
time consuming. We discuss an alternative approach for computing frequentist standard errors
of Bayesian estimators, including importance sampling. Through several numerical examples we
show that our approach can be much more computationally efficient than the standard bootstrap.
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1 Introduction

Suppose that f(•|θ) is the data generating density and π(θ) is the prior distribution for the

parameter θ. Let D be the observed data. Then the posterior distribution of θ is

π(θ|D) = Kπf(D|θ)π(θ),

where Kπ denotes the normalizing constant. There are several posterior summaries, such as

the mean, m(D) = E(θ|D) =
∫
θπ(θ|D)dθ, the posterior median m̃(D), which satisfies

∫ m̃(D)

−∞
π(θ|D)dθ = 0.5, the αth quantile qα(D), that satisfies

∫ qα(D)

−∞
π(θ|D)dθ = α for any

α ∈ (0, 1), and the posterior mode mo(D) = argmaxθ π(θ|D). Suppose that by s(D) we refer to

any summary of the posterior distribution. Throughout this article we assume that D consists

of (X1, . . . , Xn) independently and identically distributed observations. The goal of this paper

is to discuss approaches of computing the frequentist standard error of s(D).

Under a large sample, the observed data dominates the prior information in a Bayesian frame-

work, and under standard regularity conditions, the posterior distribution of finite dimensional

model parameters converges to the Gaussian distribution with the maximum likelihood estimator

and the inverse of the Fisher Information matrix as the asymptotic mean and asymptotic variance,

respectively. This asymptotic connection indicates that the Bayesian philosophy of integrating

the observed data and the prior knowledge can be seen as a general procedure that encompasses

the frequentist procedure as a special case. Therefore, as pointed out by a referee, frequentist

standard error of a Bayes estimator is a way of assessing uncertainty of the general procedure.

Particularly, for a large sample, the frequentist variance of the posterior mean converges to the

inverse of the Fisher’s information matrix. From the Bayesian perspective, frequentist standard

errors can be used for comparing uncertainty of estimators under different priors (Efron, 2015).

Although the posterior standard error (the standard deviation of the posterior distribution) is

a measure of uncertainty of the posterior distribution, Efron (2015) argued that in a Bayesian
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paradigm, accuracy of a Bayes estimator, such as posterior mean could be judged based on the

posterior distribution given that the prior distribution of the parameter reflects the truth in some

degree. Therefore, finding accuracy of a Bayes estimator in an objective way among different

subjective and objective priors is important. In fact, Berger (2006) discussed that the “pseudo-

Bayes procedures” where subjective, objective, or a mixture of subjective and objective priors

are used, often fail to provide any guidance on the performance of true subjective or objective

Bayesian analysis. He then pointed out the necessity of validating these Bayesian approaches,

and frequentist standard error of a posterior summary can be seen as a measure of such valida-

tion. Although Bayes factor is a way of comparing Bayesian procedures, many practitioners still

want to compare estimators based on a frequentist uncertainty measure. Therefore, despite an

apparent lack of coherence for incorporating a frequentist comparisons among Bayes procedures,

it provides a measure of comparing uncertainties of the estimators. Of course, we should not use

this measure solely to elicit the optimal prior for a Bayes procedure as for a proper comparison

one should consider consistency, posterior convergence rate, along with the uncertainty of the

estimator.

Efron (2015) proposed methods for computing frequentist standard errors of the posterior

mean of a function of a parameter. In particular, he derived the approximate frequentist stan-

dard deviation of the posterior mean of a parameter based on the delta method. Suppose that

T is the sufficient statistic. Following our notations, his formula for the approximate stan-

dard deviation of t̂ = E{t(θ)|D} = E{t(θ)|T}, the posterior mean of t(θ), a function of θ, is

[cov{t(θ), αT (θ)|T}TVθcov{t(θ), αT (θ)|T}]1/2, where αT (θ) = ∂log{fθ(T )}/∂T denotes the gra-

dient of log{fθ(T )} with respect to T , the sufficient statistic for θ, fθ(T ) is the density for the

sufficient statistic T , and Vθ denotes the variance of the sufficient statistic. For application of

this method it is critical that Vθ is readily available. Secondly, one key component of the delta

method is the gradient of t̂ with respect to T , and here this gradient is expressed as the pos-
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terior covariance cov{t(θ), αT (θ)|T}. Expressing ∂t̂/∂T as cov{t(θ), αT (θ)|T} critically relies on

the fact that t̂ is a posterior expectation. This posterior covariance is easy to estimate from a

sample from the posterior distribution of θ. Therefore, when Vθ is available and t̂ is a posterior

expectation, then Efron’s formula is easy to apply and it is computationally fast.

In a special case with the exponential family of distributions where θ is considered to be

the natural or canonical parameter vector, along with an uninformative prior for θ, he showed

that the standard error of the posterior mean of t(θ) = θ can be computed without running the

MCMC step to generate posterior samples for computing cov{θ, αT (θ)|T}. In lieu of the MCMC

sampling, he used a parametric bootstrap resampling technique (Efron, 2012) to compute the

posterior covariance term. Although the proposed method is applicable to only posterior means

and when Vθ is easily available, the main advantage is that this method, when it is applicable,

is much faster than the regular bootstrap procedure.

Inspired by this work we propose a general method of efficiently computing the frequentist

standard error not only of the posterior mean but also of any posterior summary, s(D). Our

method is applicable for data generated from any parametric model, not necessarily from an

exponential family of distributions. The proposed method relies on the bootstrap idea. Usu-

ally, the standard error of an estimator can be computed by the bootstrap method (Efron and

Tibshirani, 1986), where the standard error is estimated by the standard deviation of the Bayes

estimators obtained from a large number of bootstrap samples. On the other hand, the Bayes

estimator for a bootstrap sample is usually calculated by drawing a large number of Markov

chain Monte Carlo (MCMC) samples, which is often time consuming, and consequently drawing

posterior samples for each of the bootstrap data can be a prohibitively time consuming task.

The main aim of this article is to reduce this computation time. To do so, the MCMC

method will be used once to draw samples from the posterior distribution of the parameters

given the original data. Then use these posterior samples along with the importance sampling
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idea to compute the posterior summary for each bootstrap data. The details are discussed in the

following sections. To make it clearer, we want to re-state that in the proposed method, we do

need bootstrap sampling, but we bypass the MCMC sampling for each bootstrap data by a clever

use of the importance sampling method. Here is a brief description of the importance sampling

method in a few words. Suppose that we are interested in estimating θ =
∫
g(x)f(x)dx, where

f(x) is a density. With another density h(x), we can re-write θ =
∫
g(x)ω(x)h(x)dx, where

ω(x) = f(x)/h(x) is called the importance weight. Then the importance sampling estimator

of θ is θ̂ = m−1
∑m

i=1 g(xi)ω(xi), where x1, . . . , xm are iid from h(x). This technique is quite

useful for efficient estimation of tail probabilities, and is used for drawing bootstrap samples,

specially for estimating standard error of small probabilities (Efron and Tibshirani, 1994, pp.

349). However, in this paper we are using importance sampling technique to compute estimators

based on a bootstrap re-sampled data. Basically in the proposed approach bootstrap samples are

drawn using standard bootstrap resampling technique and then importance sampling is used to

compute the Bayes estimators. Although importance sampling idea has been used in many other

contexts, including but not limited to the simulated maximum likelihood estimation, computer

graphics, modelling stock market data, modelling linear and nonlinear dynamic processes (Liang,

2002), to the best of our knowledge, the use of this technique in the present context seems to be

the new.

A brief outline of the remainder of the manuscript is as follows. In Section 2 we provide the

background information. The main idea related to the posterior mean is discussed in Section

3, while Section 4 considers posterior quantiles and the posterior mode. Section 5 describes the

results of two simulation studies and a real data examples. Section 6 contains conclusions.

2 Background

To motivate this research first we consider three commonly used models.
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Logistic regression model: Suppose that Y1, . . . , Yn are independently drawn from the

Bernoulli(pi) distribution, where pi = pr(Yi = 1|Xi) = {1 + exp(−α − βXi)}−1 with a scalar

covariate Xi. Assume priors α ∼ Normal(a, σ2) and β ∼ Normal(b, τ 2), and let D denote the

observed data {(Xi, Yi), i = 1, . . . , n}. Then the posterior distribution of α and β is

π(α, β|D) ∝
n∏

i=1

{
1

1 + exp(−α− βXi)

}Yi
{

exp(−α − βXi)

1 + exp(−α− βXi)

}(1−Yi)

×

exp{−(α− a)2/2σ2}√
2πσ2

× exp{−(β − b)2/2τ 2}√
2πτ 2

.

For computing any posterior summary for π(α, β|D), usually we draw posterior samples from

π(α, β|D) using the MCMC method. So, a numerical method is must for computing frequentist

standard errors of any summary of the posterior distribution. In the simulation section, for

illustration, we apply the proposed method on this model.

Linear measurement error model: Now, we consider the following simple linear regression

problem, where using the observed data D = {(Yi,Wi), i = 1, . . . , n}, we want to fit Yi =

α + Xiβ + ǫi, where Xi is unobserved but we observed its surrogate variable Wi, and ǫi ∼

Normal(0, σ2
ǫ ). The observed surrogate Wi is associated with the true Xi through the classical

additive measurement error model Wi = Xi+Ui, where Ui ∼ Normal(0, σ2
u) and σ2

u is considered

to be known for simplicity. We further assume that measurement error is nondifferential such

that Yi is conditionally independent of Wi given the true Xi (Carroll et al., 2006, pp. 36), and

Xi ∼ Normal(µx, σ
2
x).

It is well-known that the simple linear regression of Y onW will cause an attenuation towards

0 by the multiplicative factor σ2
x/(σ

2
x+σ2

u). One of the corrections for attenuation is the method

of moments. That is, the resulting estimator β̂ = β̂wσ̂
2
w/(σ̂

2
w−σ2

u), where β̂w is the OLS estimator

ignoring measurement error, σ̂2
w is the sample variance of the observed W , and σ2

u is the variance

of U (Carroll et al., 2006, Section 3.4.1; Fuller, 1987, Section 2.5). In addition, it is well-known

that β̂ has no finite moments, because the denominator term σ̂2
w −σ2

u can get arbitrarily close to
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zero (Fuller, 1987). Therefore, Bayesian calculations are an attractive alternative.

We attempt to use a Bayesian inference for the parameters θ = (α, β, µx, σ
2
x, σ

2
ǫ ) in which α and

β are the main parameters of interest. Assigning normal priors, Normal(0, σ2
α), Normal(0, σ2

β),

Normal(0, σ2
µ) for α, β, µx, respectively and inverse gamma priors IG(δx, λx), IG(δǫ, λǫ) for σ2

x,

σ2
ǫ , respectively (Carroll et al., 2006, Section 9.4), the joint posterior distribution of θ and the

latent variable X = (X1, . . . , Xn) is

π(θ,X|D) ∝ (σ2
ǫ )

−n/2−δǫ−1(σ2
x)

−n/2−δx−1 exp

{
−

∑n
i=1(Yi − α−Xiβ)

2/2 + λǫ

σ2
ǫ

−
∑n

i=1(Wi −Xi)
2/2 + λu

σ2
u

−
∑n

i=1(Xi − µx)
2/2 + λx

σ2
x

− α2

σ2
α

− β2

σ2
β

− µ2
x

σ2
µ

}
.

Due to the conjugacy of the prior distributions, it is easy to apply the Gibbs sampler to draw

posterior samples from π(θ,X|D). Specifically, the conditional posterior distributions of α and

β given other parameters and the latent variable X are normal distributions so that we can

easily obtain their posterior summaries. However, it is not an easy problem to find the variances

of their posterior summaries mainly because they are dependent on the unobserved X . Thus a

numerical method is required.

Weibull regression model: Suppose that T1, . . . , Tn are independently drawn from the

Weibull(α, λi) distribution whose density is g(t|α, λ) = αtα−1 exp{λ− exp(λ)tα} (Ibrahim et al.,

2001, eq. 2.2.1). Let C1, . . . , Cn be the corresponding censoring times whose distribution does not

include any information about parameters α and λi (non-informative censoring) and ∆1, . . . ,∆n

be the censoring indicator where ∆i = 1 if Ti ≤ Ci (observed) and ∆i = 0 if Ti > Ci (censored).

In this example, letD = {Yi,∆i, Xi, i = 1, . . . , n}, where Yi = min(Ti, Ci), andXi is the covariate

for the ith individual. We regress the parameter λi on covariates Xi, i.e., λi = X ′
iβ. Assigning

a normal prior, Normal(µ0,Σ0), for β and a gamma prior, Gamma(α0, κ0), for α, the posterior
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distribution of α and β is

π(α, β|D) ∝ αα0+d−1 exp

[ n∑

i=1

{∆iX
′
iβ +∆i(α− 1)log(Yi)− Y α

i exp(X ′
iβ)}

−κ0α− 1

2
(β − µ0)Σ

−1(β − µ0)

]
,

where d =
∑n

i=1∆i (Ibrahim et al., 2001, eq. 2.2.4). Likewise in the logistic regression example,

we need not only to draw posterior samples from π(α, β|D) using the MCMC method to evaluate

any posterior summary, we also necessitate a numerical procedures for computing frequentist

standard errors of those posterior summaries. We use this model to analyze the Melanoma data

set in Section 5.3, and compute uncertainty measures using the proposed approach.

These examples show that even for these well researched models, posterior summaries may

not have an explicit expression that is easy to compute. Additionally, the computation of the

standard error of the posterior summaries requires extra numerical work.

3 Standard errors of posterior means

In this section we concentrate only on the posterior mean and its standard error calculations. In

Section 4, we provide recipes for efficiently calculating frequentist standard errors of other types

of Bayes estimators. For any generic vector a, we shall use a⊗2 to denote aaT .

The frequentist standard error of the posterior mean of θ, θ̂ = m∗(D) = E(θ|D) = E
π(·|D)

(θ),

where π(·|D) is the posterior distribution, is

√
varF (θ̂) =

√∫
{m∗(D)}⊗2dF (D|θ)−

{∫
m∗(D)dF (D|θ)

}⊗2

.

Suppose that one draws B random samples each of size m from the posterior distribution π(θ|D).

Denote the bth sample as (θb1, . . . , θbm), b = 1, · · · , B. Define θ̂b =
∑m

j=1 θbj/m, and θ· =
∑B

b=1 θ̂b/B. It is obvious that the variance among θ̂1, . . . , θ̂B does not estimate varF (θ̂) as (B −

1)−1
∑B

b=1(θ̂b−θ·)
2 → (1/m)var

π(·|D)
(θ) almost surely as B → ∞, where var

π(·|D)
(θ) denotes the
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posterior variance of θ. One obvious approach to estimate varF (θ̂) is to adopt the bootstrap idea.

In the bootstrap world, instead of varF (θ̂) we target estimating varF̂ (θ̂), where the observed data

are treated as the entire population. In the bootstrap method, we draw B bootstrap samples

with replacement from the original data, calculate the posterior mean for each bootstrap sample,

and then take the variance of the B posterior means. Let D(b) be the bth bootstrap data, and

π(θ|D(b)) be the corresponding posterior distribution. Define θ̂(b) = E(θ|D(b)) = E
π(·|D

(b)
)
(θ) as

the posterior mean of θ for the bth bootstrap data. Further define θ
(·)

=
∑B

b=1 θ̂
(b)/B. Then

(B − 1)−1
B∑

b=1

(θ̂(b) − θ
(·)
)2 → varF̂ (θ̂) as B → ∞.

In practice, θ̂(b) is estimated by the Monte Carlo estimator θ̂
(b)
mc =

∑M
j=1 θ

(b)
j /M , where θ

(b)
1 , . . . , θ

(b)
M

are M random draws from π(θ|D(b)), and θ̂
(b)
mc → θ̂(b) almost surely as M → ∞. Also, define

θ
(·)

mc = B−1
∑B

b=1 θ̂
(b)
mc. Then as M → ∞,

(B − 1)−1
B∑

b=1

(θ̂(b)mc − θ
(·)

mc)
2 → (B − 1)−1

B∑

b=1

(θ̂(b) − θ
(·)
)2.

Hence
∑B

b=1(θ̂
(b)
mc − θ

(·)

mc)
2/(B − 1) will be used as the estimator of varF̂ (θ̂). In the following

paragraph we describe how we estimate θ̂(1), . . . , θ̂(B) without having numerically computing B

posterior distributions using B MCMC chains thereby saving lots of computation time.

Suppose that using MCMC method we have drawn θ1, . . . , θM from π(θ|D), the posterior

distribution of θ given the entire data D. Suppose that in the bth bootstrap sample, Xi occurs

r
(b)
i times, where 0 ≤ r

(b)
i ≤ n, but

∑n
i=1 r

(b)
i = n. Then the posterior distribution of θ given the

bth bootstrap data D(b) is

π(θ|D(b)) =

∏n
i=1 f

r
(b)
i (Xi|θ)π(θ)∫ ∏n

i=1 f
r
(b)
i (Xi|θ)π(θ)dθ

,

so

θ̂(b) =

∫
θπ(θ|D(b))dθ =

∫
θ
∏n

i=1 f
r
(b)
i (Xi|θ)π(θ)dθ∫ ∏n

i=1 f
r
(b)
i (Xi|θ)π(θ)dθ

=
G

(b)
1

G
(b)
0

,
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where G
(b)
s =

∫
θs

∏n
i=1 f

r
(b)
i (Xi|θ)π(θ)dθ for s = 0 and 1. Next, we can re-write

G(b)
s =

1

Kπ

∫
θs
∏n

i=1 f
r
(b)
i (Xi|θ)π(θ)∏n

i=1 f(Xi|θ)π(θ)
Kπ

n∏

i=1

f(Xi|θ)π(θ)dθ

=
1

Kπ

∫
θsω(b)(θ)Kπ

n∏

i=1

f(Xi|θ)π(θ)dθ,

where the importance weight ω(b)(θ) =
∏n

i=1 f
r
(b)
i (Xi|θ)/

∏n
i=1 f(Xi|θ) =

∏n
i=1 f

(r
(b)
i −1)(Xi|θ).

Hence θ̂(b) can be estimated by

θ̂
(b)
is =

∑M
j=1 θjω

(b)(θj)∑M
j=1 ω

(b)(θj)
, (1)

where θ1, · · · , θM are M MCMC samples drawn from π(θ|D), the posterior distribution of θ

given the original data D. Importantly, under regularity conditions, θ̂
(b)
is → θ̂(b) almost surely as

M → ∞ (see the Appendix). Next define θ
(·)

is = B−1
∑B

b=1 θ̂
(b)
is . As M gets large,

(B − 1)−1
B∑

b=1

(θ̂
(b)
is − θ

(·)

is )
2 → (B − 1)−1

B∑

b=1

(θ̂(b) − θ
(·)
)2.

Hence we use
∑B

b=1(θ̂
(b)
is − θ

(·)

is )
2/(B − 1) to estimate varF̂ (θ̂). The above procedure can be

summarized in the following steps.

Step 1. Draw M MCMC samples from π(θ|D), and call them (θ1, · · · , θM).

Step 2. Draw B bootstrap samples with replacement fromD, and each bootstrap sample consists

of n observations. For the bth sample we obtain (r
(b)
1 , · · · , r(b)n ), with 0 ≤ r

(b)
i ≤ n and

∑n
i=1 r

(b)
i =

n, where r
(b)
i is the number of times Xi appears in the bth bootstrap sample, b = 1, . . . , B.

Step 3. Compute θ̂
(b)
is =

∑M
j=1 θjω

(b)(θj)/
∑M

j=1 ω
(b)(θj) with ω(b)(θj) =

∏n
i=1 f

(r
(b)
i −1)(Xi|θj) for

b = 1, . . . , B, and θ
(·)

is =
∑B

b=1 θ̂
(b)
is /B.

Step 4. Compute (B − 1)−1
∑B

b=1(θ̂
(b)
is − θ

(·)

is )
2.

One of the main concerns of importance sampling is the behavior of the importance weights

that have influence on the efficiency of the estimator. The following remark gives an intuitive
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justification that our choice π(θ|D) as the trial distribution provides a bounded importance

weight with high probability.

Remark 1. Note that ω(b)(θ) = exp[
∑n

i=1(r
(b)
i − 1)log{f(Xi|θ)}] = exp{ℓ(b)(θ) − ℓ(θ)}, where

ℓ(b)(θ) =
∑n

i=1 r
(b)
i logf(Xi|θ) + log{π(θ)} and ℓ(θ) =

∑n
i=1 log{f(Xi|θ)} + log{π(θ)}, and θ is

drawn from the posterior distribution π(θ|D). Now,

ℓ(b)(θ)− ℓ(θ̃) ≤ ℓ(b)(θ)− ℓ(θ) ≤ ℓ(b)(θ̃(b))− ℓ(θ),

where θ̃(b) is the posterior mode based on the bth bootstrap data set and θ̃ is the posterior mode

based on the original data. Then under certain regularity conditions, posterior distribution

π(θ|D) has the asymptotic normal distribution having mean θ̃ and the variance is minus the

inverse Hessian of the log posterior evaluated at θ̃ for large n (Theorem 3.1 of Carlin and Louis,

2008).

4 Other Bayes estimators

4.1 Posterior quantile

Here we broadly discuss the standard error calculation of posterior quantiles that include the

posterior median and credible intervals as special cases. The αth quantile is defined as qα(D) =

F−1

π(θ|D)
(α), where F

π(θ|D)
(r) =

∫ r

−∞
π(θ|D)dθ. To estimate the frequentist standard error of

qα(D), we may apply the regular bootstrap method by calculating the αth quantile for each of

the B posterior distributions, that means one needs to draw posterior samples from π(θ|D(b))

using MCMC technique for each b = 1, . . . , B. Instead of doing this for multiple bootstrap data

sets, here we can also apply the importance sampling idea. For a trial density h(θ), we have

F
π(θ|D

(b)
)
(r) =

∫ ∞

−∞

I(θ ≤ r)π(θ|D(b))dθ =

∫ ∞

−∞

I(θ ≤ r)
π(θ|D(b))

h(θ)
h(θ)dθ

=

∫ ∞

−∞

I(θ ≤ r)ω(b)(θ)h(θ)dθ,
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where ω(b)(θ) = π(θ|D(b))/h(θ). The distribution function can be estimated by

F̂
π(θ|D

(b)
)
(r) =

∑M
j=1 I(θj ≤ r)ω(b)(θj)∑M

j=1 ω
(b)(θj)

, (2)

where θ1, . . . , θM are drawn from h(θ). We shall evaluate F̂
π(θ|D

(b)
)
(r) for a grid of values of r.

Next, the estimated αth quantile is defined as q
(b)
α,is = inf{r : F̂

π(θ|D
(b)

)
(r) ≥ α}. Note that we

shall use the same set of θ1, . . . , θM drawn from h(θ), for each bootstrap data set thereby saving

considerable computation time.

When α takes a moderate value in the range of 0.2 to 0.8, the importance sampling estimates

are reasonable if π(θ|D) is used as the trial distribution. For more extreme values of α, (smaller

than 0.2 or larger than 0.8), we recommend the following trial distribution for efficient estimation

of the αth quantile. To be more specific, without any loss of generality, write θ = (θ1, θ
T
2 )

T , and

suppose that we are interested in estimating the αth quantile of θ1 based on the bth bootstrap

data. Take h(θ) = h1(θ1)h2(θ2), where h1 denotes the uniform density over [l, u] for given values

of l and u, and h2 is taken as the posterior distribution of θ2 given the data D, that means,

h2(θ2) =
∫
π(θ|D)dθ1. Although there is no optimum choice of l or u, based on our computing

experiences, we recommend l = q0.5(D) − 6 × sdθ1(D) and u = q0.5(D) + 6 × sdθ1(D), where

qα(D) and sdθ1(D) denote the αth quantile and the posterior standard deviation of θ1 given the

entire data D.

Suppose that (θ11, . . . , θ1M) are M random draws from h1(θ1), and (θ21, . . . , θ2M ) are M

random draws from π(θ2|D). The later sample is obtained by simply discarding the first com-

ponent from each of the M MCMC samples drawn from π(θ|D) ≡ π(θ1, θ2|D). Computa-

tion of the importance weight ω(b)(θ) at θ = θj = (θ1j , θ
T
2j)

T , for any j = 1, . . . ,M , requires

h2(θ2j) =
∫
π(θ∗1, θ

T
2j |D)dθ∗1 = κ−1

∫ ∏n
i=1 f(Xi|θ∗1, θT2j)π(θ∗1, θT2j)dθ∗1, where κ is the normalizing

constant that does not depend on θj . In order to save computation time, instead of targeting to
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evaluate h2(θ2j) separately, we consider directly evaluating ω(b)(θj), and

ω(b)(θj) =
π(θ1j , θ

T
2j |D(b))

h1(θ1j)
∫ θ1,max+ε

θ1,min−ε
π(θ∗1, θ

T
2j |D)dθ∗1

=
κ−1
b

∏n
i=1 f

r
(b)
i (Xi|θ1j , θT2j)π(θ1j , θT2j)

h1(θ1j)κ−1
∫ θ1,max+ε

θ1,min−ε

∏n
i=1 f(Xi|θ∗1, θT2j)π(θ∗1, θT2j)dθ∗1

=

[
h1(θ1j)

κ−1

κ−1
b

∫ θ1,max+ε

θ1,min−ε

{
n∏

i=1

f(Xi|θ∗1, θT2j)
f r

(b)
i (Xi|θ1j , θT2j)

}{
π(θ∗1, θ

T
2j)

π(θ1j , θT2j)

}
dθ∗1

]−1

, (3)

where κb is the normalizing constant for the bth bootstrap data D(b), and θ1,min and θ1,max

denote the observed minimum and maximum values of θ1 in the posterior samples drawn from

π(θ1, θ2|D). To cover the entire domain of θ1, we extend the range of the integration by adding

and subtracting a small number ε > 0. In all our computations, we used ε = 0.1 × IQR, where

IQR stands for the inter quartile range of the posterior distribution of θ1 given the original data

D. Importantly, we do not need to evaluate κ and κb for estimating F
π(θ|D

(b)
)
(r) as they are

independent of θj , so they get canceled from the normalized weight. Finally, we recommend

to use Gauss-Legendre quadrature to determine the above integral in (3). Also to reduce the

computational burden, once ω(b)(θj) is calculated for some b, then we compute ω(b′)(θj) using the

following formula ω(b′)(θj) = ω(b)(θj)π(θ1j , θ
T
2j |D(b′))/π(θ1j , θ

T
2j |D(b)), for any b′ 6= b as

ω(b′)(θj) =
π(θ1j , θ

T
2j |D(b′))

h1(θ1j)
∫ θ1,max+ε

θ1,min−ε
π(θ∗1, θ

T
2j |D)dθ∗1

=
π(θ1j , θ

T
2j |D(b))

h1(θ1j)
∫ θ1,max+ε

θ1,min−ε
π(θ∗1, θ

T
2j |D)dθ∗1︸ ︷︷ ︸

ω(b)(θj)

×
π(θ1j , θ

T
2j |D(b′))

π(θ1j , θT2j |D(b))
. (4)

4.2 Posterior mode

Here we do not apply the importance sampling idea but use another approach for time efficient

computation. The posterior mode is defined as θ̂mode = argmaxθ π(θ|D). The variance of θ̂mode,

varF (θ̂mode) can be estimated by
∑B

b=1(θ̂
(b)
mode−θ

(·)

mode)
2/(B−1), where θ̂

(b)
mode denotes the posterior

mode for the bth bootstrap sample, and θ
(·)

mode =
∑B

b=1 θ̂
(b)
mode/B. Since this standard bootstrap

method could be time consuming as it requires to solve a set of gradient equations for each of the

B bootstrap data sets, we propose the following alternative approach of estimating that variance.

12



Under sufficient smoothness conditions, θ̂mode will satisfy S(θ̂mode|D) = 0, where S(θ|D) =

∂log{π(θ|D)}/∂θ = ∂log{f(D|θ)}/∂θ + ∂log{π(θ)}/∂θ = 0. Suppose that as n → ∞, θ̂mode →

θmode. Then

0 = S(θ̂mode|D) =
∂

∂θ
log{f(D|θ̂mode)}+

∂

∂θ
log{π(θ̂mode)}

≈ [
∂

∂θ
log{f(D|θmode)}+

∂

∂θ
log{π(θmode)}] +

[
∂2

∂θ2
log{f(D|θmode)}+

∂2

∂θ2
log{π(θmode)}](θ̂mode − θmode).

Thus, with A = E[∂2log{f(D|θmode)}/∂θ2 + ∂2log{π(θmode)}/∂θ2], we have (θ̂mode − θmode) ≈

A−1[∂log{f(D|θmode)}/∂θ+ ∂log{π(θmode)}/∂θ], and consequently the variance can be obtained

by the sandwich formula,

varF (θ̂mode) = A−1var[
∂

∂θ
log{f(D|θmode)}+

∂

∂θ
log{π(θmode)}]A−T .

Here A can be estimated by Â = ∂2log{f(D|θ̂mode)}/∂θ2 + ∂2log{π(θ̂mode)}/∂θ2. The middle

term of the variance formula is var[∂log{f(D|θmode)}/∂θ] that can be estimated by

v̂ar[
∂

∂θ
log{f(D|θmode)}] = (B − 1)−1

B∑

b=1

[
∂

∂θ
log{f(D(b)|θ̂mode)} −

1

B

B∑

b′=1

∂

∂θ
log{f(D(b′)|θ̂mode)}

]2

,

and in particular, for fast computation we use ∂log{f(D(b)|θ̂mode)}/∂θ =
∑n

i=1 r
(b)
i ∂log{f(Xi

|θ̂mode)}/∂θ. Finally, varF (θ̂mode) is estimated by Â−1v̂ar[∂log{f(D|θmode)}/∂θ]Â−T .

5 Numerical studies

In order to assess and compare the performances of the methods, we conducted simulation studies

and real data analysis for the motivating examples described in Section 2. Specifically, we provide

simulation results for the logistic regression model. Next, the linear measurement error model is

illustrated using a simulated data set. Third, we present an analysis of real data set using the

Weibull regression model. Finally, following a refree’s request, we consider an application of the

proposed method to a vector autoregressive (VAR) model.
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5.1 Logistic regression model

We generated 500 data sets, and each simulated data set consists of n = 500 observations, denoted

by {(Xi, Yi), i = 1, . . . , n}. We drew X from Normal(0, 1) distribution and the response variable

Y was simulated from a Bernoulli distribution with the success probability pr(Y = 1|X) =

exp(α + βX)/{1 + exp(α + βX)}. The true values of α and β were −2.5 and 1, respectively.

That makes the proportion of success around 10%. For the Bayesian inference of the parameters α

and β we used the same Normal(0, 2) priors for both of them. Then for the MCMC computation,

we used 15, 000 iterations with the first 5, 000 samples were used as burn-in samples.

For each data set, we estimated the posterior mean of α and β. We also calculated standard

errors of the posterior means for each data set. Let α̂j and β̂j be the posterior mean based on

the jth data set, for j = 1, . . . , 500. For each data set, we computed the frequentist standard

error of the estimator based on 1) the regular bootstrap method and 2) the proposed importance

sampling based approach. For the jth data set, we drew B = 500 bootstrap samples with

replacement. Suppose that (α̂
(b)
mcmc,j, β̂

(b)
mcmc,j) denotes the posterior means for the bth bootstrap

data, for b = 1, . . . , 500, and these posterior means were calculated by applying the MCMC

method to each bootstrap data separately. The regular bootstrap standard error for α̂j and β̂j

are now expressed as sd1,j(α) =
√

(1/499)
∑500

b=1(α̂
(b)
mcmc,j −

∑500
b′=1 α̂

(b′)
mcmc,j/500)

2 and sd1,j(β) =
√

(1/499)
∑500

b=1(β̂
(b)
mcmc,j −

∑500
b′=1 β̂

(b′)
mcmc,j/500)

2, respectively. Next, we computed the proposed

importance sampling based standard error, sd2,j(α) =
√

(1/499)
∑500

b=1(α̂
(b)
is,j −

∑500
b′=1 α̂

(b′)
is,j/500)

2

and sd2,j(β) =
√

(1/499)
∑500

b=1(β̂
(b)
is,j −

∑500
b′=1 β̂

(b′)
is,j/500)

2, where (α̂
(b)
is,j, β̂

(b)
is,j) denotes the posterior

means for the bth bootstrap data based on the importance sampling idea. Our goal is to illustrate

that instead of using the regular bootstrap idea that is way more time consuming, one can simply

use the importance sampling based method to estimate the frequentist standard error of the Bayes

estimators. We wanted to show that proposed method is computationally far more time efficient,

and on the other hand, the standard error calculated using the proposed method is close to the
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standard error calculated based on the regular bootstrap method. We, once again, point out that

the regular bootstrap approach requires enumeration of B MCMC chains, one for each of the

B bootstrap data sets, while the proposed approach requires enumeration of only one MCMC

chain. In the appendix, we compare the computational complexity of the two approaches.

Figure 1 shows a scatter plot of two standard errors (sd1 and sd2) for 500 data sets for the

intercept and slope parameter. The figure reveals that the two estimates of the standard error are

in good agreement as the points are well dispersed around the 45 degree line. Table 1 shows the

computation time (in sec) for the two methods, and clearly the proposed importance sampling

based approach is computationally far more superior than the regular bootstrap method.

Since the logistic regression belongs to the class of the generalized linear models, we are

able to apply Efron (2015)’s method to evaluate the standard deviation of the posterior mean

for the intercept and slope parameters. Let θ = (α, β)T . From Equation (3.1) of Efron

(2015), fθ(T ) = exp[θTT −
∑n

j=1 log{1 + exp(α + βXj)}], where T = (
∑n

j=1 Yj,
∑n

j=1XjYj)
T

is the sufficient statistic for θ. Then, E(T ) = (
∑n

j=1 pj,
∑n

j=1Xjpj)
T and var(T ) = Vθ =

∑n
j=1 pj(1−pj)(1, Xj)

T (1, Xj), where pj = P(Y = 1|Xj) = exp(α+βXj)/{1+exp(α+βXj)}, the

success probability given X = Xj. Due to the numerical instability of the “conversion factors”

we are not able to apply his method that completely avoids MCMC sampling, and this issue has

been acknowledged in Efron (2015). However, we apply his general approach for calculating the

standard deviation of the posterior mean that is summarized in the following steps.

Step 1. Draw M MCMC samples (θ1, . . . , θM) from π(θ|D).

Step 2. Estimate cov(θ, θ|T ) by ĉov =
∑M

j=1(θj − θ̄)(θj − θ̄)T/M , where θ̄ =
∑M

j=1 θj/M . Then

we obtain sd3 = [ĉovTVθ̂ĉov]
(1/2).

Now we compare sd3 with the gold standard approach, sd1, in Figure 2. In terms of compu-

tation time, Efron’s approach is much much faster than any other procedure (Table 1). However,
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Efron’s approach is applicable when Vθ is easily available, and his method can compute standard

error for posterior mean only, not for any quantiles.

Next we calculated the standard error of the first quartile, third quartile, the 2.5th percentile,

and the 97.5th percentile of the posterior distribution of α and β based on 1) the regular bootstrap

method and 2) the importance sampling based method. We particularly considered 2.5th and

97.5th percentiles as they are often used for constructing credible intervals. Figures 3 and 4 show

the standard errors computed using the two approaches for each of these summary statistics for

the simulated data sets. We want to point out that for the 2.5th and 97.5th percentiles we used the

trial distribution that is described in Section 4.1 and it involves with a slightly more computation

than the scenario where π(α, β|D) is used as a trial distribution (see Table 1). However, despite

of being more computationally involved, overall this approach is more time efficient (see Table

1) than the regular bootstrap method where one needs to run MCMC method on each bootstrap

data set separately. We also need to keep in mind that this time comparison is heavily depended

on the number of MCMC iterations used in the computation, and the time gain will be more

if more MCMC iterations are used for the posterior inference. For a fair comparison, every

core computation was conducted using FORTRAN 90 within an R script. That is, generation

of random samples from the posterior distribution π(θ|D) and evaluation of the importance

weight ω(b)(θ) in Sections 3, 4.1 were programmed in FORTRAN. Although there are a number

of presumably optimized programs or R packages for Bayesian computing, we decide to write

our own code for fair comparison across the methods.

The computational complexity of the proposed method and the regular bootstrap method

using MCMC simulations are of the same order, and according to the Bachman-Landau notation

it is O(BMn), where B, M , n denote the number of bootstrap samples, the number of MCMC

iterations, and the sample size, respectively. In Appendix B, we have explained the computational

complexity for this example through algorithms, and similar algorithms can be written for other
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examples. Although the computational complexity of the regular bootstrap method and the

proposed method are of the same order, by avoiding MCMC simulations the computation of

posterior summary is much faster in the latter method than the former approach.

5.2 Linear measurement error model

Next, we revisit the linear measurement error model. We first note that the joint distribution of

the observed Y and W , fY,W (y, w) is an exponential family. Since fY,W (y, w) =
∫
f(w, x, y)dx,

where f(y, w, x) is the joint density of W,X, Y ,

fY,W (Y,W ) = h(Y,W )c(θ) exp

[
− 1

2

{ 1

σ2
ǫ

− β2/σ4
ǫ

β2/σ2
ǫ + 1/σ2

u + 1/σ2
x

}
Y 2

−
{αβ2/σ4

ǫ + βµx/(σ
2
ǫσ

2
x)

β2/σ2
ǫ + 1/σ2

u + 1/σ2
x

− α

σ2
ǫ

}
Y +

1/σ4
u

2(β2/σ2
ǫ + 1/σ2

u + 1/σ2
x)
W 2

−αβ/(σ2
ǫσ

2
u)− µx/(σ

2
uσ

2
x)

β2/σ2
ǫ + 1/σ2

u + 1/σ2
x

W +
β/(σ2

ǫσ
2
u)

β2/σ2
ǫ + 1/σ2

u + 1/σ2
x

YW

]
,

where h(Y,W ) = exp(−W 2/2σ2
u) does not depend on θ since σ2

u is known and c(θ) =

(2π)−1{σ2
ǫσ

2
uσ

2
x(β

2/σ2
ǫ + 1/σ2

u + 1/σ2
x)}−1/2 exp{−α2/2σ2

ǫ − µ2
x/2σ

2
x + (α2β2/2σ4

ǫ + µ2
x/2σ

4
x −

αβµx/2σ
2
xσ

2
ǫ )/(β

2/σ2
ǫ + 1/σ2

u + 1/σ2
x)} is a function of θ. Therefore, T = (Y 2, Y,W 2,W, Y W )

is a sufficient statistic for the natural parameter η = (η1, . . . , η5), where η1 = 1/σ2
ǫ −

(β2/σ4
ǫ )/(β

2/σ2
ǫ + 1/σ2

u + 1/σ2
x), η2 = {αβ2/σ4

ǫ + βµx/(σ
2
ǫσ

2
x)}/(β2/σ2

ǫ + 1/σ2
u + 1/σ2

x) − α/σ2
ǫ ,

η3 = 1/σ2
u− (1/σ4

u)/(β
2/σ2

ǫ +1/σ2
u+1/σ2

x) η4 = {αβ/(σ2
ǫσ

2
u)−µx/(σ

2
uσ

2
x)}/(β2/σ2

ǫ +1/σ2
u+1/σ2

x),

and η5 = {β/(σ2
ǫσ

2
u)}/(β2/σ2

ǫ + 1/σ2
u + 1/σ2

x). In order to apply Efron (2015)’s method, we need

to find the variance covariance matrix Vη of T , which is a very difficult if not impossible task.

Therefore, we applied our approach to compute the frequentist standard error for the posterior

summaries of α and β.

We generated a single data set comprising of D = {(Yi,Wi, Xi), i = 1, . . . , n = 1, 000}

under the true model Yi = α + βXi + ǫi, α = 0.23, β = 0.47, and Wi = Xi + Ui, where

ǫi ∼ Normal[0, (
√
0.5)2], Ui ∼ Normal[0, (

√
0.5)2] and Xi ∼ Normal(0.5, 1). We analyzed the
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data according to the method described in Sections 3 and 4, without using X in the analysis.

We applied Gibbs sampling to draw samples from the posterior distribution of the parameters,

and used M = 10, 000 iterations after the first 5, 000 samples as burn-in samples. For the prior

distributions, we set σ2
α = σ2

β = σ2
µ = 10, 000 and δx = δǫ = λx = λǫ = 1. Then we drew B = 500

bootstrap samples with replacement and we evaluated sd1 and sd2 as described in Section 5.1.

Table 2 shows the frequentist standard errors corresponding to the posterior summaries of α and

β, along with the computation time. The results show the advantages of the proposed method

over the regular bootstrap method in terms of computational time.

5.3 Weibull regression model

We now analyze a subset of the E1684 melanoma clinical trial data (Example 1.2 and 2.2 of

Ibrahim et al., 2001) to determine the frequentist standard errors of posterior summaries from

the Weibull model. This was a phase III clinical trial conducted by Eastern Cooperative Oncology

Group (ECOG) with chemotherapy of interferon alpha-2b in melanoma patient and can be found

at “http://merlot.stat.uconn.edu/~mhchen/survbook/”. The data set contains observed

time measured in year, (right) censoring indicator and chemotherapy treatment indicator for

each of 255 patients. The purpose of this clinical study was to examine the treatment effect on

the survival times (Y ). Among the possible models for this objective, we fit a Weibull regression

model on the survival times (Y ) using chemotherapy as a covariate (X) according to Example

2.2 in Ibrahim et al. (2001). Following Ibrahim et al. (2001), we used a Gamma(1, 0.001) prior

for α and a Normal((0, 0)T , 104I2) prior for β, where I2 denotes the 2 × 2 identity matrix, for

the Weibull regression model described in Section 2. Here we also generated B = 500 bootstrap

data sets to calculate standard errors for the posterior summaries of parameters.

Table 3 shows the posterior estimates of β0, β1 and α, corresponding frequentist standard

errors, and computing times. Instead of presenting only posterior means as done in Table 2.2
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of Ibrahim et al. (2001), we extend that table to include other posterior summaries and the

frequentist uncertainty of the estimates. Moreover, following the method described in Section 5,

we are able to calculate the standard errors more time efficiently.

Furthermore, it is worth to note that it is difficult to apply Efron (2015)’s approach for

calculating frequentist standard deviation of posterior mean to the Weibull model because it is

not an exponential family of distributions. Secondly, the joint density of the above model is

f(D|α, β0, β1) = exp[
∑n

i=1{∆ilogα+∆i(β0 +Xiβ1) +∆i(α− 1)log(Yi)− Y α
i exp(β0 +Xiβ1)}] so

that it is also hard to calculate Vθ the variance of the sufficient statistic, where θ = (α, β0, β1).

Hence, we are not able to apply his method in this context.

5.4 Vector autoregressive model (VAR)

In the previous examples, we discussed the frequentist standard errors of posterior summaries

for parameters themselves. We now discuss a more complicated case where the main interest is a

function of parameters. Suppose that we have a p-dimensional time series data ys, s = 1, . . . , S,

and assume that the data follows a vector autoregression (VAR) model. The VAR model with

lag L is y′
s = µ+

∑L
j=1 y

′
s−jBj + ǫ′s, where µ is an 1× p vector, Bj is a p× p coefficient matrix,

ǫ1, . . . , ǫS are iid N(0,Σ), and the covariance Σ is an unknown p × p positive definite matrix.

Instead of focusing our attention on the elements of parameter matrices B = (B′
1, . . . ,B

′
L)

′ and

Σ, it is more of interest to estimate the impact of changing an element of ys on the future value

ys+k. These effects are called impulse responses (Stock and Watson, 2001), and they are defined

as nonlinear functions of the parameter matrices B and Σ.

The likelihood function of (µ,B,Σ) is L(Φ,Σ) = (2π)−Sp/2|Σ|−S/2 exp[−tr{(Y −XΦ)Σ−1(Y −

XΦ)′}/2], where Y = (y1, . . . ,yS)
′,Φ = (µ′,B′)′,X = (x1, . . . ,xS)

′, and xs = (1,y′
s−1, . . . ,y

′
s−L)

′.

Note that Y is S × p matrix, X is S × (Lp + 1) matrix, and Φ is (Lp + 1) × p matrix. Here

we consider the impulse response to orthogonalized errors U = ǫ′Ψ−1, where Ψ is the Cholesky
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matrix for Σ, i.e., Σ = Ψ′Ψ. That is, the impulse responses Zk of ys+k based on the structural

shock ǫ′sΨ
−1 is Zk = ΨHk, where Hj =

∑j
i=1BjHj−i, and Bi = 0 for i larger than lag L and

B0 = I (Sims, 1980; Ni et al., 2007).

For the computational purpose, we consider conjugate priors for (Φ,Σ). That is, π(Σ) ∝

|Σ|−(p+1)/2, the Jeffreys prior, and π(φ) ∝ |M0|−1/2 exp{−(φ − φ0)M
−1
0 (φ − φ0)

′/2}, where

φ = vec(Φ). Next, following Ni et al. (2007), the conditional density of φ given Σ,D is N(m,V )

and the conditional density of Σ given Φ,D is inverse Wishart (S(Φ),M), where m = φ̂mle +

{M−1
0 +Σ−1 ⊗ (X ′X)}−1M−1

0 (φ0 − φ̂mle), V = {M−1
0 +Σ−1 ⊗ (X ′X)}−1, φ̂mle = vec(Φ̂mle),

Φ̂mle = (X ′X)−1X ′Y , S(Φ) = (Y −XΦ)′(Y −XΦ), and D = {y1, . . . ,yS} is the observed

data. Since the impulse response is a function of B and Σ, we rewrite Zk = Z(B,Σ, k). We

take the posterior mean as a Bayes estimator of the impulse response, and it is (Ẑk)(i,j) =
∫
{Z(θ, k)}(i,j)π(θ|D)dθ, where θ = (B,Σ), and (Zs)(i,j) is the (i, j) element of Zs. Now, we

apply the proposed method to calculate the frequentist standard error of Ẑk. In this complex

example, it is nearly impossible to find the variance-covariance matrix of the sufficient statistics

of θ, therefore it is not possible to apply Efron’s approach.

For illustration purpose, we generated a data set from the following VAR(1) model with

p = 2,

y′
s =

[
−0.7 1.3

]
+

[
0.7 0.3
0.2 0.6

]
y′
s−1 + ǫs, ǫs

iid∼ N(0,Σ), Σ =

[
1 0.5
0.5 1

]
, s = 1, . . . , S,

with S = 1, 000. Since the time series data is no more independent, we used the moving block

bootstrap (MBB), where we divided the series into N overlapping blocks of length ℓ to preserve

the dependence structure of the original dataset (Kreiss and Lahiri, 2012). Then we chose b

blocks out of N blocks to make the bootstrap observations y∗
1, . . . ,y

∗
S.

We fit a VAR(2) model to the simulated dataset. As in previous examples, we usedM = 10000

iterations after the burn-in samples. We imposed noninformative priors for Φ, where φ0 = 0
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and M0 = 20I. Then we drew B = 500 MBB samples with 15% of the total dataset as a block

length (ℓ).

Figure 5 show the point estimate (posterior mean) and the 95% confidence band based on

the frequentist standard error of the posterior mean for the impulse responses of y2 to y1 and y1

to y2, respectively. The confidence bands based on sd1 and sd2 are similar, but computationally

the second approach (sd2) was about 5.6 times faster than the first approach (sd1). In Table 4,

we also report the numerical values of the standard errors at each time lag, and the results do

not show any appreciable difference between sd1 and sd2.

6 Conclusions

In this paper we have discussed numerical approaches for efficient computation of standard errors

for posterior summaries. The main theme of the paper is to use bootstrap samples but avoid

using full blown MCMC based inference for each of the bootstrap data. The methods rely on

the importance sampling idea, and are broadly applicable. The R code for our computation is

available at https://stat.tamu.edu/~sinha/research.html.

It is well-known that the presence of outliers results in a poor performance in a bootstrap

approach because they are more frequent in bootstrap samples than the original dataset if we

consider the classical nonparametric bootstrap (Salibian-Barrera and Zamar, 2002; Willems and

Van Aelst, 2005; Huber and Ronchetti, 2009). Therefore, the performance of our proposed

method can be affected by the outliers in the data as we have used the classical nonparametric

bootstrap with replacement. However, this may be overcome by considering robust bootstrap

methods for drawing samples (Singh, 1998; Hu and Hu, 2000; Salibian-Barrera and Zamar, 2002),

or a combination of a robust bootstrap method and a robust Bayesian method, possibly with a

flat-tailed prior (Berger et al., 1994; Maŕın, 2000).
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Appendix

A Proof of the convergence result of Section 3

Here we discuss the convergence of (1). Suppose that ω(b)(θ) and θω(b)(θ) are integrable

functions of θ with respect to the posterior distribution of the original data π(θ|D) so that

G
(b)
s =

∫
θsω(b)(θ)π(θ|D)dθ/Kπ = E

π(·|D)
{θsω(b)(θ)}/Kπ is finite for all b and s = 0, 1. There-

fore, as M → ∞, from the ergodic theorem (Jones, 2004; Robert and Casella, 2005), with

probability 1,

1

M

M∑

j=1

ω(b)(θj) → E
π(·|D)

{ω(b)(θ)} = KπG
(b)
0 ,

1

M

M∑

j=1

θjω
(b)(θj) → E

π(·|D)
{θω(b)(θ)} = KπG

(b)
1 .
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From Remark 1 in Section 3, ω(b)(θ) = exp{ℓ(b)(θ) − ℓ(θ)} implies ω(b)(θ) is positive for all θ.

Therefore,
∑M

j=1 ω
(b)(θj) > 0 and G

(b)
0 > 0, and consequently

θ̂
(b)
is =

∑M
j=1 θjω

(b)(θj)∑M
j=1 ω

(b)(θj)
→ G

(b)
1

G
(b)
0

= θ̂(b)

with probability 1 as M → ∞.

B Computational complexity of the two approaches for the logistic

regression example

Algorithm 1 Full Bootstrap method for the logistic regression model in Section 5.1

for b = 1 to B do
Draw a bootstrap sample
Initialize α

(b)
0 and β

(b)
0

for m = 1 to M + burn do
Propose αcand, βcand ∼ q(α, β|α(b)

m−1, β
(b)
m−1)

Calculate

r = min{1, π(α
cand,βcand|D

(b)
)q(α

(b)
m−1,β

(b)
m−1|α

cand,βcand)

π(α
(b)
m−1,β

(b)
m−1|D

(b)
)q(αcand,βcand|α

(b)
m−1,β

(b)
m−1)

}
Generate u ∼ U(0, 1)
if u < r then

α
(b)
m = αcand

β
(b)
m = βcand

else
α
(b)
m = α

(b)
m−1

β
(b)
m = β

(b)
m−1

end if
end for
Find averages α̂(b), β̂(b) for the bth bootstrap sample:
α̂(b) =

∑M
j=1 α

(b)
j /M and β̂(b) =

∑M
j=1 β

(b)
j /M

end for
Evaluate standard deviations sd1(α) and sd1(β) as in Section 5.1
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Algorithm 2 Proposed method for the logistic regression model in Section 5.1

for b = 1 to B do
Draw a bootstrap sample, and obtain (r

(b)
1 , . . . , r

(b)
n )

for m = 1 to M do
evaluate ω(b)(αm, βm) =

∏n
i=1 f

(r
(b)
i −1)(Xi, Yi|αm, βm)

†

end for
Find averages α̂(b), β̂(b) for the bth bootstrap sample ∗:
α̂(b) =

∑M
j=1 αjω

(b)(αm, βm)/
∑M

j=1 ω
(b)(αm, βm) and

β̂(b) =
∑M

j=1 βjω
(b)(αm, βm)/

∑M
j=1 ω

(b)(αm, βm)
end for
Evaluate standard deviations sd2(α) and sd2(β) as in Section 5.1

† (α1, β1), . . . , (αM , βM ) are from π(α, β|D).
∗If we are interested in the qth quantile we will compute α̂

(b)
q , β̂

(b)
q based on equation 2 in Section 4.1

at this step.
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Table 1: Average computing time (± standard deviation of 500 simulated data sets) measured
in seconds for calculating standard errors of posterior summaries in logistic regression model
from Section 5.1 based on the 1) regular bootstrap method, 2) the importance sampling based
approach, and 3) the method proposed in Efron (2015). Here Q1 and Q3 denote the first and
third quartiles, and 2.5th and 97.5th denote the 2.5th percentile and 97.5th percentile of the
posterior distribution, respectively.

Method
Time to calculate Computational

Mean Q1 (Q3) 2.5th (97.5th) complexity
1 247.78 ± 6.70 247.78 ± 6.70 247.78 ± 6.70 O(BMn)
2 46.65 ± 0.41 51.66 ± 0.40 120.44 ± 0.93 O(BMn)
3 4.18 ± 0.6 O(Mn)

Table 2: The frequentist standard errors and computing times for α and β of the linear
measurement error model in Section 5.2. Here sd1 and sd2 denote the standard errors based on
the regular bootstrap method and the importance sampling based approach.

Posterior
Parameter Mean Q2 2.5th 97.5th

α
sd1 0.028 0.027 0.028 0.027
sd2 0.027 0.029 0.028 0.030

β
sd1 0.034 0.034 0.033 0.036
sd2 0.030 0.032 0.035 0.031

Computation sd1 233.06 233.06 233.06 233.06
time in second sd2 22.99 26.36 24.16 24.16
Computational sd1 O(BMn) O(BMn) O(BMn) O(BMn)
complexity sd2 O(BMn) O(BMn) O(BMn) O(BMn)
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Table 3: Posterior summaries and the corresponding frequentist standard errors of β0, β1, and
α used in the Weibull model for analyzing the E1684 melanoma data given in Section 5.3.
Here sd1 and sd2 denote the standard errors based on the regular bootstrap method and the
importance sampling based approach.

Posterior
Parameter Mean Q2 2.5th 97.5th

β0

−1.103 −1.101 −1.710 −0.586
sd1 0.278 0.278 0.295 0.266
sd2 0.255 0.265 0.252 0.261

β1

−0.256 −0.256 −0.585 0.090
sd1 0.177 0.178 0.180 0.179
sd2 0.169 0.176 0.163 0.183

α
0.791 0.793 0.688 0.891

sd1 0.038 0.039 0.035 0.043
sd2 0.037 0.038 0.034 0.038

Computation sd1 151.77 151.77 151.77 151.77
time in sec sd2 37.31 43.59 85.75 85.75

Computational sd1 O(BMn) O(BMn) O(BMn) O(BMn)
complexity sd2 O(BMn) O(BMn) O(BMn) O(BMn)
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Table 4: The frequentist standard errors of the estimated the impulse responses at each time
lag. Here sd1 and sd2 denote the standard errors based on the regular bootstrap method and
the importance sampling based approach.

Time lag y2 to y1 y1 to y2

sd1 sd2 sd1 sd2
1 0.0241 0.0222 0.0404 0.0403
2 0.0388 0.0374 0.0338 0.0334
3 0.0442 0.0434 0.0304 0.0298
4 0.0431 0.0428 0.0279 0.0272
5 0.0401 0.0402 0.0262 0.0256
6 0.0369 0.0372 0.0253 0.0248
7 0.0339 0.0342 0.0247 0.0244
8 0.0311 0.0315 0.0243 0.0242
9 0.0286 0.0290 0.0239 0.0240
10 0.0263 0.0267 0.0234 0.0236
11 0.0242 0.0246 0.0227 0.0232
12 0.0222 0.0226 0.0220 0.0225
13 0.0204 0.0208 0.0212 0.0218
14 0.0188 0.0191 0.0203 0.0210
15 0.0173 0.0176 0.0194 0.0201
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Figure 1: Frequentist standard errors of posterior means of the intercept (α) and the slope (β) of
the logistic regression model from the 500 simulated data sets in Section 5.1 based on the regular
bootstrap method (Y-axis) and the proposed importance sampling based method (X-axis).
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Figure 2: Frequentist standard errors of posterior means of the intercept (α) and the slope (β) of
the logistic regression model from the 500 simulated data sets in Section 5.1 based on the regular
bootstrap method (Y-axis) and the approach proposed in Efron (2015) (X-axis).
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Figure 3: Frequentist standard errors of Q1, Q3, 2.5
th percentile, and 97.5th percentile of the

posterior distribution of α in the logistic regression model from the 500 simulated data set in
Section 5.1. Regular bootstrap standard errors are presented along the Y-axis while importance
sampling based standard errors are presented along the X-axis.
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Figure 4: Frequentist standard errors of Q1, Q3, 2.5
th percentile, and 97.5th percentile of the

posterior distribution of β in the logistic regression model from the 500 simulated data set in
Section 5.1. Regular bootstrap standard errors are presented along the Y-axis while importance
sampling based standard errors are presented along the X-axis.
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Figure 5: The estimated impulse responses (solid line) and its 95% (pointwise) confidence band
of y2 to a shock in y1 (left panel) and vice versa (right panel) referenced in Section 5.4. The
bold dotted line is based on regular bootstrap approach (sd1) while the circled solid line is based
on importance sampling based approach (sd2).
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