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S.1 Inconsistency of naive method in measurement error scenario

In the naive approach, unobserved X; is replaced by W; = Z;n:l Wij/m in the estimation method where
all covariates are assumed to be error free. The reason is explained as follows. First, fp(T|W;,Z;;8,H) =
[ fr(T\Wi, X5, 2 8, H) fx (Xi|Zs, Wi)dX; = [ fr(T| X, Zs; B, H) fx (Xi|Zs, W3)dX;. I fx(Xi|Zs, W5) is de-
generate at W;, the functional form of fr(T|W;, Z;; 3, H) will be the same as fr(T|X;, Z;; 3, H) with X; being
replaced by W; and then the naive approach will consistently estimate 3 and H. However, for a fixed m,
fx(X;|Z;,W;) tends to be degenerate at W; only when o2 — 0. This situation is obviously not much of a

concern.

S.2 Details of regression calibration method

Define X’z(c ) =+ G W —i—CgZi. In the regression calibration approach, an unobserved Xj; is replaced by )?Z =
X, (E) in the estimation method where all covariates are assumed to be error free, and Z = (Zo, 61, EQ)T is given
by o = (52,/m) T — (2 /)T, S71Z, & = 1 (2 fm), & = (52 /mm)sT, 7%, 0 = (2452 /m) — 51,5 s,
W= Wifn, Z=30Zi/n, S: = (n = 1)1 3001 (Zi = Z)%?, sye = (n = 1)1 3004 (Zi = Z) (Wi = W),

= fmlm—1)n} " 0, 3 (W= W2, 52 = [m 30 (Wim W)™ — (n—1)s2]/{m(n—1)}, and a® := aa
for any generic vector a.

S.3 Turnbull’s algorithm for estimating survival probability

First we consider a grid of time points 0 = §y < & < & < - -+ < & which includes all observed (L;, R;] intervals.
For the ith subject, we define a weight a;; = 1 if (L;, R;] contains the interval (§;_1,&;) and 0 otherwise. We
start with an initial guess at S (&;) and proceed as follows:

Step 1. At time ¢, the probability of an event is given by

Step 2. The number of events at time ; is estimated by

QiiDj .
d—zz I ,i=1,...,q;

=1 alj/pj



Step 3. The number of at-risk subjects at time ¢; is estimated by Y*(&;) = >

ir=3 '

Step 4. Compute the updated product-limit estimator given by

ﬂ@—fﬁl—#éﬁ'
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Repeat Steps 1-4 until S (&;) converges with a specified tolerance.

S.4 Conditional distributions used in the Gibbs sampling referenced in Section 3.1

Step 0. Initialize the parameters v;, 07, m, L =1,..., K, ¢1,..., ¢, and X1,..., X.
Then in each iteration of the collapsed Gibbs sampling we do the following steps with the most recently
updated values of the parameters, 91, ...,%,, and X1,..., X,.
Step 1. Sample o2 from InvGamma(mn/2 + @y, > iy > (Wi — Wi)2/2 4 1/by);
Step 2. Sample (71,72, ..., ) from Dirichlet(} ) I(¢1 =1) + o, ..., >0 I = 1) + a);
Step 3. For each i = 1,...,n, sample ¢; from Multinomial(p; 1,...,pix ), where
Q

Pig X exp{—(X; — v/ Zi)*/2(c} + o7 /m)}
\/277(0l2 +02/m)

forl=1,--- K,
Step 4. Sample 012 from the target density

(of) ! o] i (Wi = DWi—f'Z:)* 1 .
(02 /m + o) =072 0 202 /m+a7) boo? S

Step 5. Sample ; from the multivariate normal distribution with variance and mean

S I(th = )ZE? -
Ql — =1 7 7 + Eq_/]l ,

ol +o2/m

. S I =)W =T 2)Z;
i} Q{ T TR

respectively;
Step 6. Finally, sample X;’s from the Normal distribution with variance v, = {Z;il I(; =1)/o? + m/o2}~}
and mean m, = fum{Zf;l I = )T Zi o} +mW,;/o2}.

S.5 Standard error for the regression calibration method

~ ~ ~T ~
Let B,cr, = (Breits Breg2)! and Hyk, be the estimators of 3 and H for the k;th imputed data with T being

imputed according to the method in Section 3.2, and X; being replaced by )?Z whose formula is given in Section



2. After a few steps of algebra we can obtain a consistent estimator of the asymptotic variance of Brc,kt given
by

~

Zrc(ﬁqutv ﬁTC,kt) {Arc M+ DV&I‘(\FC)DT}ATC 3

where A, and A,. s are the same as A and Ajy, respectively, given in Section 3.3 with 37 H , and X; being

replaced by B and ﬁmkt, and X’i, respectively, and D = Y | ¢;/n,
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Iy n > e ) > ST e —~ o\ . .
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the bootstrap resampling method. Finally, the RC estimators for 3 and H are defined as [Ai',,c =" k=1 ﬁrc,kt /mj

and ITITC Z ki1 H, ¢, /mf, respectively, and the asymptotic variance of ,6 can be estimated by

3 )2
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S.6 Large sample properties of the proposed estimator

Proofs of Theorem 1 and Corollary 1. Following Lemma 1 of Wang and Robins (1998), the proposed estimator
BC is asymptotically equivalent to B, the solution of

* *
my

ozmm ZZSgﬂH B), ku, k)
T Tl Kot
n m;y mk
T mimg DY >3 7, [ ibes = Mo, (Vi3 B) + Xig, B+ Z1 Ba}
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where Z7, = (X[ . ZhHT, X, = X0k, (Aékx) denotes the k,th posterior sample of X; when 6 = 5;% Also,
note that when A; = 1, Vig, r, = Tik, k. the kith sampled value of the ith time-to-event drawn from the
conditional density f(T;k, k.| X7, Zis Li < Tigyk, < Ri;B), and when A; =0, Vig, k, = Li. Also, note that
A; = Ak, k, for every k; and k.



Additionally, define
Si(B, Vi ko (B), X, (0)) = /0{Z;kz_/”l’z,kt,kx(u;B)}dMi,kt,kI(u;67H)a

where M g, 1, (w5 8, H) = Ni g, ko, (@) =[5 Yi gy oo (VAN H 1, (9) + X7y 1+ 2] Ba}y Nigy ey (W) = I (Vi g, <
Uy D gy k, = 1) and Yy g, g, (u) = I(Vz',khkx > U)v
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By, k. (t,8:8) = exp[_

and ﬁkt,kx (t; B) is the solution of H(t) for the equation

n

D AN gk, (8) = Yikso, (VAA{H(8) + X[y, 51+ Z] B2}] = 0. (S.1)
=1

Note that due to the martingale property, E{S;(8%, Vi, k,(B8%), X (0))} = 0. We assume that standard
regularity conditions hold (Hartigan, 1983; p. 108) and that our flexible prior allows that the posterior distri-

bution of 8 is asymptotically normal with mean §M 1, and variance {nfl(a )} 1, where EM 1, is the maximum
likelihood estimate of 8, Z1(0) = {—8%log(£1)/0000"} /n, and L = [T, £14, where

L = / FWalXo) - % f (Wi X0) £(Xi|Z:)dX

1 W - & m (Wi —~['Zs)?
————exps — 5 X eXPY — 5 v (-
(Vamou)m 207 = \/2m(03/m + o7) 20t /m + of)

Suppose that standard regularity conditions hold and \/H(BML —0) =n"Y23°"  1hi(0) +0,(1), where 1;(0) =
7, 1(0)0log (L1 ;)/06 and all elements of cov{1;(8)} are assumed to be finite, and Z; (8) = E{—0%log(L1;)/0000™ }.
Define S;(8,3,60) = Zkt 0 ZZ?ZI Si(B, Vike ko (B), X[y, (0))/mimy. Assume that B converges to 3*. We

can now write

0 = mrmin > Z Z Z; Z[ ek — MHiy ke, (Viky ke B) + X751, (Or,)B1 + 21 By}
=1 ki=1ky=1
n . 1 omm -
= mrmn > Z Z Si(B, Vi, (B), X7 1, (Bnr1)) + poas > Dy(Ok, — Ouir) + op(n'7?)
i=1 k=1 k=1 T ky=1
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Now, after rearranging the terms of (S.2), and using /(6 —8) = n~1/2 Yo ¥i(0)+0,(1), where E{¢(0)} =

0 and all elements of cov{y;(0)} are finite, we obtain the following influence function representation of 3,

3 ~1 -1 Di'Dyy/n G o
Vn(B -8 = IZ Si(B",87,0) + Dy Dothi(8) p——— ——— > Bk, — Ouir) + 0p(1). (S.3)
z ke=1
The second component of (S.3) arises due to posterior samples (61,...,57,1;). Conditional on the ob-

served data, D] ngﬁZZ;ZI(EkE — 01/ m} converges to a normal distribution with mean 0 and variance
D Dy{Z,(0)} DI Dy " /m? (which is actually independent of the observed data), where Z;(0) = E{7,(6)},
and the first part of (S.3) converges to a mean zero normal distribution due to the Central Limit Theorem.
Therefore, \/ﬁ(B — 3%) converges to a convolution of two independent normal distributions which is normal. In
other words,

\/ﬁEél/Q(B — 3% BN Normal(0,I),



X2
where I is the identity matrix and ¥ 3= E{DllS(B*, B, 0)+D11D2¢(9)} +(m:) D Do{Z1(8)} ' DI DT

The asymptotic variance of \/ﬁEl (or \/ﬁ,@c) can be consistently estimated by
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For a sufficiently large n and flexible prior distributions on the parameters, the posterior mode and the max-

imum likelihood estimator of @ will be very close, so we can replace /G\M 1 by [ MAP, the posterior mode of 6.

Additionally, we shall use
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where N*{ Hy, 1. (t; 8)} = Bioi, (£, a; 8).



S.7 Additional simulation study

To study sensitivity of the proposed method we considered some additional scenarios. We considered an
additional case by simulating X from a mixture of normal distributions and U from the modified gamma
distribution with all the other settings of the simulation remaining the same as in the last case in the manuscript
where we mimicked the AIDS clinical trial data set. The results are presented in Table S.1 for the » = 0 case.
As in the manuscript, here also IM shows superior performance over the other methods.

Next we simulated data similar to the previous scenario except that X followed {Gamma(1l,1) — 1} and
the measurement error U was allowed to depend on the time-to-event (differential measurement error) and the
true covariate X. Specifically, U was simulated from the following mixture distribution: Normal(y = 0, 0 =
0.505+ANI(X < 0) + Uniform(—1, 1)I(X > 0). The results given in Table S.2 indicate quite satisfactory
performance of IM compared to NV and RC in terms of bias and coverage probability. Thus, all of these results
indicate that IM is not sensitive towards a moderate violation of the model assumptions.

To address a comment from a reviewer, we included an additional simulation study to assess the sensitivity
of IM towards the independence assumption of the measurement error U and the true covariate X. First, X
was generated from Normal(0, 1) and depending on whether X is less than 0 or greater than 0, U was generated
from Normal(0,0.5%) or Normal(0,0.71?), respectively. Second, X was generated from a centered and scaled
gamma distribution and depending on whether X is less than or greater than 0, U was generated from a
modified gamma distribution with mean zero and variance 0.25 or 0.5 respectively. In this second scenario,
three assumptions, independence of X and U, mixture normal distribution for X, and normal distribution for
U, are violated simultaneously. The results are given in Table S.3. In this situation where model assumptions
are grossly violated, the bias for the estimator of 81 under the IM method is somewhat larger than that the
RC method. However, IM is still much better than NV in terms of bias. This result confirms that even for

somewhat severe degree of model violations, IM still performs much better than NV.

S.8 Plots from the MCMC chains for the real data analysis

This supplementary material contains the trace plots and Gelman-Rubin diagnostic plots of the parameter
estimates involved in the ACTG data analysis (see pages 10, 11, 12). Here 7; ; represents the jth element of
the v parameter involved in the ith component of the mixture normal model. For the ACTG data, since the
BIC chose a two-component mixture normal model, we have ¢ = 1,2 and 7 = 1,...,7. We also report the
Gelman-Rubin factor (F) for each of the parameters, and usually values close to 1 suggest convergence of the
chain.

Although ~; 7 has an F value of 1.37, the corresponding trace plot shows satisfactory convergence of the



chain. Similarly, despite a slow mixing of the chain of (f%l and 092@,2 in their trace plots, the corresponding F

values indicate satisfactory convergence.
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Table S.1: Simulation results based on 1000 replications for r = 0 with n = 500, unequal-length intervals and 90% right
censoring on average. Here X follows a mixture of normals and measurement error U = ¢, U*, and U™ follows the modified
gamma distribution. All entries are multiplied by 100. B = bias, S = standard deviation, E = estimated standard error,
C = 95% coverage probability, M N = Mixture Normal, NM = No measurement error, NV = Naive, RC = Regression
calibration, IM = Imputation method.

B1 B2
03 NM NV RC IM NM NV RC IM
025 B —2.3 21.0 11.1 -48 3.7 3.2 3.1 3.7
24.3 194 219 29.1 334 33.6 33.4 334
24.1 20.0 22.7 29.3 32.1 32.1 34.3 32.5
94.7 78.2 91.6 944 956 953 953 954

Qo w

0.5 -23 339 173 -79 37 29 28 3.5
243 171 21.5 339 334 336 334 335
24.1 177 2277 347 321 321 35.0 328

94.7 494 86.2 951 95.6 951 953 955

Qmnw

Table S.2: Simulation results based on 1000 replications for r = 0 and 1 with n = 500, unequal-length intervals and 90%
right censoring on average. Here X ~ Gamma(1,1) — 1, and U depends on X and the time-to-event outcome. All entries
are multiplied by 100. B = bias, S = standard deviation, E = estimated standard error, C = 95% coverage probability,
NM = No measurement error, NV = Naive, RC = Regression calibration, IM = Imputation method.

r=20 r=1
B1 B2 B1 B2
NM NV RC IM NM NV RC IM| NM NV RC IM NM NV RC IM
—-4.9 459 265 10.7 6.1 55 58 6.6|—-4.7 371 241 78 52 43 44 58
30.7 14.6 17.7 25.1 34.3 352 349 35.0] 29.3 15.0 18.2 26.3 32.6 33.1 33.0 33.3
28.8 17.3 22.1 29.8 32.7 328 33.1 33.2| 28.1 184 222 30.6 324 323 32.6 33.0
94.0 22.6 789 93.7 95.0 945 949 95.1 | 94.8 46.6 81.7 95.2 964 95.7 95.6 96.0

Q- wnw

Table S.3: Simulation results based on 1000 replications for r = 0 with n = 500, unequal-length intervals and 90% right
censoring on average. Here U depends on X. All entries are multiplied by 100. B = bias, S = standard deviation, E =
estimated standard error, C = 95% coverage probability, NM = No measurement error, NV = Naive, RC = Regression
calibration, IM = Imputation method.

X~NU|X~N X ~ MG, U*|X ~ MG
B B2 B1 B2
NM NV RC IM NM NV RC IM|NM NV RC IM NM NV RC IM
—1.3 125 —41 —69 34 20 20 b54|—-42 215 75 —113 54 50 48 55
148 143 17.2 303 30.9 30.8 30.8 34.2| 25.5 20.1 23.7 325 342 347 343 34.3
147 138 16.6 30.5 30.5 30.4 30.5 32.7| 242 19.7 23.8 322 322 322 336 328
94.6 82.2 939 953 957 957 959 943 | 934 764 925 950 943 93.4 944 94.7

Q" nw
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